

Assessing the feasibility of using permeable reactive barriers for phosphorus removal from stormwater

Spent lime treatment system

Prepared for Ramsey-Washington Metro Watershed District to fulfill the reporting requirements of the U.S. EPA 319 Grant

May 2014

4700 West 77th Street
Minneapolis, MN 55435-4803
Phone: 952.832.2600
Fax: 952.832.2601

Assessing the feasibility of using permeable reactive barriers for phosphorus removal from stormwater

Spent lime treatment system

May 2014

Contents

1.0	Intro	oduction	1
2.0	Desc	cription of grant elements	3
3.0		ium phosphate chemistry	
4.0	Labo	oratory experiments	6
5.0	Pilot	t-scale spent lime barrier system design and construction	9
6.0	Lime	e barrier monitoring results	12
	6.1	Water quality	
	6.2	Aquatic toxicity	14
	6.3	Hydrology and hydraulics	15
		6.3.1 Hydraulic conductivity	20
	6.4	Sediment	24
7.0	Cond	clusions and discussion	26
	7.1	Acknowledgements	26
8.0	Refe	erences	27

List of tables

Table 3-1	Composition of spent lime material from the St. Paul Water Utility	5
Table 6-1	Average concentration of several constituents in stormwater prior to and after treatment by the spent lime treatment cell	12
Table 6-2	Results of chronic seven-day laboratory toxicity tests conducted with <i>Ceriodaphnia dubia</i> and stormwater collected at the inlet and the outlet of the spent lime treatment cell	
Table 6-3	Hydrologic characteristics of the treatment cell for measured storm events in 2012	19
	List of figures	
Figure 3-1	Spent lime from the St. Paul Water Utility	4
Figure 4-1	Results of jar tests conducted in 1-liter jars with stormwater and ground and dried spent lime added for treatment	
Figure 4-2	Concentration of soluble reactive phosphorus and pH of water treated in columns loosely packed with spent lime. Test conducted on January 13, 2011, item number three in the list of laboratory studies above.	8
Figure 5-1	Conceptual design drawings of the permeable reactive barrier. Final design in Appendix B.	10
Figure 5-2	Spent lime treatment cell with and without spent lime. Riser pipe was installed after the photograph on the right was taken. The dark spots in the treatment cell are leaves.	11
Figure 6-1	Maintenance of the treatment cell with the use of a hand auger to mix the lime	14
Figure 6-2	Relationship between peak water level in the spent lime treatment cell and peak flow through the cell	17
Figure 6-3	For selected storm events, graphical examples of the relationship between measured water level in the spent lime cell, flow into the cell, and the contact time of the stormwater and the spent lime material in the cell	18
Figure 6-4	Construction plans for the spent lime treatment cell with the monitoring well location added	20
Figure 6-5	Schematic of the unconfined Darcy's Law model in polar coordinates including the actual monitoring well, outlet riser pipe, and spent lime material	22
Figure 6-6	Model results compared to measured data around June 11, 2012	23
Figure 6-7	Model results compared to measured data around June 16, 2012	24
Figure 6-8	Model results compared to measured data around June 19, 2012	24
Figure 6-9	Phosphorus fractions in sediment collected in a pond downstream of the spent lime treatment cell	25

List of appendices

Appendix B Design drawings and supporting design drawings

Appendix C Monitoring data collected in 2012 and 2013 for the pilot system

List of attachments

Attachment A Pilot system laboratory data for sediment, spent lime, and toxicity

1.0 Introduction

Engineers and scientists are currently faced with the challenge of finding innovative, effective, and environmentally friendly approaches that can meet lower phosphorus standards being promulgated in Minnesota and throughout the U.S. Traditional phosphorus removal approaches such as settling ponds and wetlands may not be capable of removing phosphorus from stormwater to the degree needed to meet phosphorus standards. These traditional settling approaches may not be able to remove small particles upon which the phosphorus is often concentrated in stormwater (Pilgrim, 2002). Other approaches have limitations—sand filters have the potential to clog (Barrett et. al., 2003); biological filter performance may be limited by season, temperature, and light availability (Dodds, 2003); and chemical treatment can generate substantial hydrated floc that eventually must be disposed (Pilgrim, 2002).

To effectively and permanently remove phosphorus, phosphate must be incorporated into recalcitrant organic material or be bound to cations such as calcium, magnesium, or unreducible trace metals such as aluminum. Spent lime is an abundant waste byproduct of drinking water treatment and the primary component of spent lime is calcium carbonate. Fortunately, calcium chemically prefers to be bound to phosphate over carbonate, and phosphate is readily converted into calcium phosphate in the presence of high concentrations of calcium carbonate (Stumm and Morgan, 1996). Spent lime has an advantage over limestone in that it consists of recently precipitated and hence more available calcium carbonate. The use of spent lime for stormwater treatment is a new concept. A treatment cell with spent lime is not precipitating or flocculating phosphate (e.g., like alum), and it is not necessarily intended to filter as do sand filters. Rather, it is a chemical "substitution" reaction whereby the newly formed calcium phosphate simply resides in the cell where the calcium carbonate once resided. There are several beneficial attributes of spent lime:

- A waste material—a "green" material that is also potentially free
- Rapid reaction time between phosphate and calcium means high treatment capacity
- High hydraulic conductivity; a treatment cell with spent lime can treat relatively large volumes of stormwater in a relatively small footprint
- Removes both particulate phosphorus and dissolved phosphorus (phosphate)
- Removes aluminum, calcium, iron, zinc, and lead from stormwater
- Can be used to adjust the pH of low pH water
- Easy maintenance consisting simply of annually mixing the lime in the cell to maintain the porosity and hydraulic conductivity of the spent lime and to expose new spent lime surfaces to stormwater

This document serves to fulfill the final reporting requirement of the Section 319-10 Nonpoint Source Management Grant (project ID # 7132) provided to the grantee (the Ramsey-Washington Metro Watershed District) by the State of Minnesota (Minnesota Pollution Control Agency). This grant provided

funding to evaluate the capacity of spent lime to remove phosphorus from stormwater. This study included a laboratory evaluation and a pilot-scale study. Laboratory experiments were completed by spring 2011. The pilot scale study included the design and construction of a treatment cell that contained spent lime and treated stormwater runoff. The pilot scale treatment system was designed in 2011 and constructed in the fall of that year. The treatment system was operational in 2012 and 2013. Performance monitoring of the treatment system was conducted in 2012 and 2013.

2.0 Description of grant elements

The grant provided for a series of laboratory experiments and a pilot-scale field study. The laboratory study included column tests whereby stormwater was passed through different lime configurations (described in more detail in Section 4.0). Measurements taken for column-treated and untreated stormwater included: total phosphorus, total dissolved phosphorus, ortho-phosphate measured as soluble reactive phosphorus, total suspended solids, volatile suspended solids, pH, specific conductance, and one set of metals analysis (aluminum, calcium, copper, iron, lead, and zinc). The pilot-scale field study (Sections 5.0 and 6.0) included site identification, design, permitting, construction, and monitoring of a pilot-scale lime treatment cell. Monitoring included stormwater flow into and out of the cell, water level in the cell, water chemistry, and aquatic toxicity. All laboratory and field work was complete by December 2013.

3.0 Calcium phosphate chemistry

The primary components of spent lime (see Figure 3-1 for a photograph of spent lime) used in this study (from the St. Paul Water Utility) are water (59%), calcium (33%), magnesium (3.55%), aluminum (0.53%), and iron (0.51%). The mineral components are provided on a dry weight basis. The other component (not shown in Table 3-1) is carbonate, which is the corresponding anion to calcium and magnesium.

With respect to phosphorus removal, calcium carbonate is the primary and most abundant active ingredient. According to Stumm and Morgan, 1996, calcium will preferentially bind to phosphate with excess (high concentrations) calcite and pH near 7.0 or greater. Higher pH favors calcium phosphate formation for a given concentration of calcium carbonate (calcite).

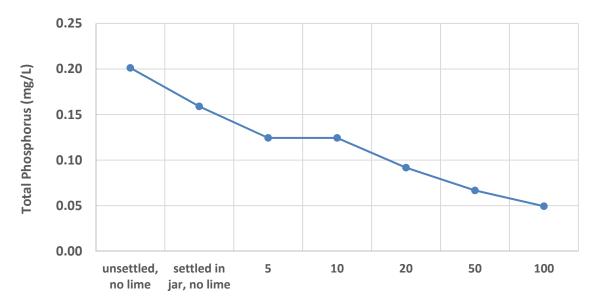
Eq. 1:
$$10CaCO_3 + 2H^+ + 6(HPO_4)^{2-} + 2H_20 = Ca_{10}(PO_4)_6(OH)_{2(s)} + 10HCO_3^-$$

The above reaction shows that the conversion of calcite to apatite (calcium phosphate) consumes acidity (H+). Hence, with an excess of calcite, the appropriate pH will be achieved to foster the formation of apatite. For a given stormwater volume, greater apatite formation should lead to greater acidity consumption and a more pronounced pH increase. Also, the reaction will increase the bicarbonate concentration for water (e.g., treated stormwater) in which this reaction occurs. An increase in bicarbonate is evidence that apatite is being formed.

Figure 3-1 Spent lime from the St. Paul Water Utility

Table 3-1 Composition of spent lime material from the St. Paul Water Utility

Parameter	Concentration (mg/kg dry weight)	Parameter	Concentration (mg/kg dry weight)
% Moisture	59.3	Magnesium	35,700
Aluminum	5,350	Manganese	115
Ammonia as N	74.4	Mercury	<0.046
Arsenic	<10.9	Molybdenum	<8.2
Barium	122	Nickel	116
Boron	<81.6	Nitrate as N	<7.4
Cadmium	<1.6	Total Phosphorus	117
Calcium	333,000	Potassium	<1350
Chloride	113	Selenium	<8.2
Chromium	184	Silver	<5.4
Copper	15.3	Sodium	<533
Cyanide	<1.3	Sulfate	<98.9
Iron	5,080	Total Kjeldahl Nitrogen	831
Lead	<10.9	Zinc	<10.9


4.0 Laboratory experiments

Laboratory experiments were conducted to help identify the key design parameters and constraints of the planned full-scale pilot treatment system that uses spent lime. Because spent lime has the consistency of partially dried clay, there was some initial concern about how the spent lime may hold up in a treatment cell. Focus was placed on finding some kind of binder that could create structure for the spent lime as well as control the rate of spent lime dissolution. Several experiments were conducted using mixtures of spent lime and organic polymers (binders) as well as simply using unmodified spent lime. The second aspect of these experiments was quantification of phosphorus removal as a function of contact time between stormwater and spent lime.

The following laboratory experiments were conducted:

- 1. Simple jar test with dried spent lime added to 1-liter jars with stormwater followed by rapid mixing for approximately five minutes (Figure 4-1). The purpose of this experiment was simply to confirm that spent lime can bind and remove phosphorus from stormwater.
- 2. Column test with a fixed flow-through rate of approximately 1.8 liters per hour and mixtures of lime and poly vinyl alcohol, poly acrylamide, Chemloc 411, polyacrylic acid, and polyvinyl alcohol.
- 3. Column test with a range of flow-through rates ranging from 0.1 to 1.8 liters per hour and dried lime that was *not* mixed with any binder.
- 4. Column test with a range of flow-through rates ranging from 0.2 to 1.0 liters per hour and dried lime that was *not* mixed with any binder and a layer of crushed limestone called CC17 on the bottom of the column to prevent breakthrough of lime into the collection jars (i.e., as a filtering media).
- 5. Column test with a range of flow-through rates ranging from 0.2 to 4.8 liters per hour and dried lime that was mixed with polyvinyl alcohol (lime to polymer mass ratio of about 3:1) and a layer of crushed limestone called CC17 on the bottom of the column to prevent breakthrough of lime into the collection jars.
- 6. Column test with a range of flow-through rates ranging from 0.15 to 5.0 liters per hour and dried lime that was mixed with polyvinyl alcohol (lime to polymer mass ratio of about 10:1) and a layer of crushed limestone called CC17 on the bottom of the column to prevent breakthrough of lime into the collection jars.
- 7. Column test with a range of flow-through rates ranging from 0.37 to 3.59 liters per hour and dried lime that was mixed with polyvinyl alcohol (lime to polymer mass ratio of about 6:1) and a layer of crushed limestone called CC17 on the bottom of the column to prevent breakthrough of lime into the collection jars.

8. Column test with a range of flow-through rates ranging from 0.2 to 4.3 liters per hour and dried lime that was *not* mixed with any binder and a layer of crushed limestone called CC17 on the bottom of the column to prevent breakthrough of lime into the collection jars (i.e., as a filtering media).

Grams of Dried and Ground Spent Lime added to 1 Liter of Stormwater

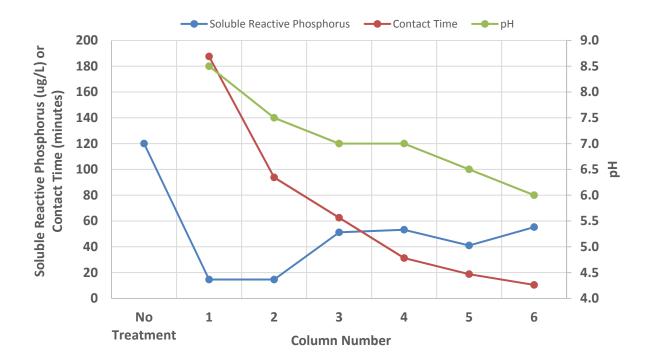
Figure 4-1 Results of jar tests conducted in 1-liter jars with stormwater and ground and dried spent lime added for treatment

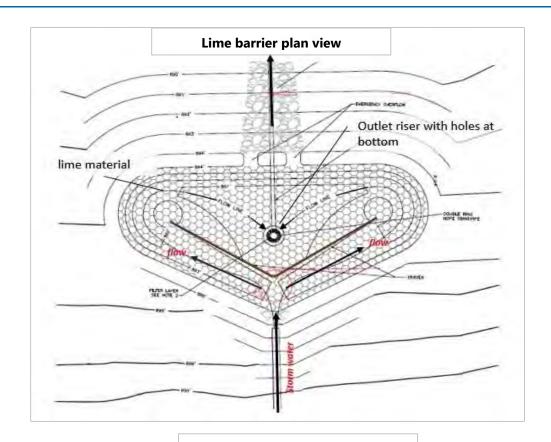
The results of these tests are provided in Appendix A. Upon review of the column test results, it was concluded that mixing spent lime with some sort of binder did not provide any better control of treatment rates, and in some cases, it appears that the binder either inhibited or enhanced dissolution of spent lime in an unpredictable manner. The column experiments demonstrated that spent lime could be used to treat stormwater without a binder or any other type of pre-processing requirements. The following observations and conclusions were derived from the column tests:

- Spent lime is capable of removing a significant percentage of ortho-phosphate (measured as soluble reactive phosphorus) from stormwater; however, a treatment cell with spent lime may not be capable of removing particulate phosphorus.
- The hydraulic conductivity of spent lime is high even when wet and does not readily clog.

- The spent lime used in the column was dried, and hence, it may not be as reactive as spent lime that is not dried. (See Section 6.0 for pilot system monitoring results with undried spent lime.)
- Contact time appears to be a critical design parameter. Phosphorus removal increased with greater contact time. Greater contact time also led to a greater increase in the pH of treated stormwater. Hence, pH effects will need to be considered as part of the design process.

Because spent lime without the addition of a binder was capable of reducing soluble reactive phosphorus by greater than 80 percent in some of the tests (see Figure 4-2), it was concluded that spent lime would be used "as is" in the pilot-scale treatment cell.




Figure 4-2 Concentration of soluble reactive phosphorus and pH of water treated in columns loosely packed with spent lime. Test conducted on January 13, 2011, item number three in the list of laboratory studies above.

5.0 Pilot-scale spent lime barrier system design and construction

Using knowledge gained from the column experiments, a site was identified in the Ramsey Washington Metro Watershed District and a treatment cell (or barrier) was conceptually designed that would allow stormwater to contact spent lime in a controlled manner. Although it was originally envisioned that stormwater would pass through a sort of subsurface barrier with lime, the ultimate design of the system is more aptly described as a treatment cell. There were several key considerations with the design of the lime treatment cell:

- In order for phosphorus removal to occur, thorough and even contact between the spent lime material and storm water needs to occur.
- The contact time between stormwater and lime needed to be controlled to allow phosphorus removal but to minimize calcium carbonate dissolution and minimize the potential that the pH of treated stormwater would exceed water quality standards.
- The treatment system required enough head to facilitate rapid draining of the cell after the completion of each storm event.
- The treatment cell path was chosen to facilitate flow through the entire length of the treatment system.
- Easy access for maintenance.

Design drawings of the spent lime treatment cell are shown in Figure 5-1 and Appendix B. The plan view figure shows stormwater entering the cell and then splitting into two lobes of the cell, each lobe having a path of approximately 30 feet. The cell is filled with spent lime, and as soon as stormwater enters the cell, it beings to infiltrate through the spent lime material. The outlet consists of a riser (see side view in Figure 5-1) with 1-inch diameter holes beginning at the bottom (total of 12 holes) and extending about 1 foot upwards. As stormwater rises in the cell, it contacts the spent lime, and the higher the stormwater rises in the cell the greater the outflow rate.

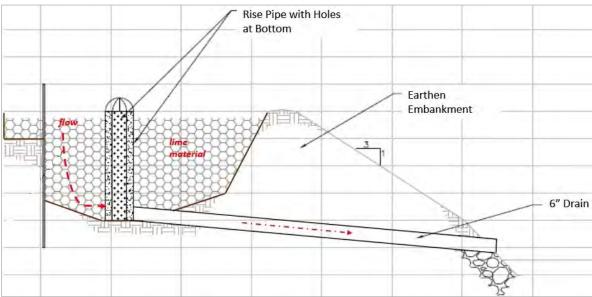


Figure 5-1 Conceptual design drawings of the permeable reactive barrier. Final design in Appendix B.

The surface area of the treatment cell at Larpenteur Avenue and Wakefield Lake (Maplewood, Minnesota) is 475 square feet, with a maximum depth of 3 feet and an average width of 7.9 feet for the entire cell. The elevation difference between the lime material surface and the elevation of the riser overflow outlet was approximately 3 inches; hence, there was minimal freeboard to allow ponding above the material. With these design dimensions, the maximum flow through the cell was around 1.0 cubic feet per second. More flow could have been pushed through the cell with a greater freeboard and ponding depth above the spent lime material.

The treatment cell was primarily earthen with wooden barriers to direct flow and minimize cell short circuiting (Figure 5-2). Figure 5-2 also shows the treatment cell with and without the placement of approximately 35 cubic yards of spent lime material. The lime, provided directly from the City of St. Paul Water Utility after dewatering in a belt press, was placed in the cell with a backhoe.

Annual maintenance has consisted of removal of accumulated material on the top of the cell and mixing the top 1-foot of the lime material with a shovel. Mixing takes about 1 to 2 hours. Other mixing tools may be useful such as a compost aeration tool. Rototillers have not been used successfully.

Figure 5-2 Spent lime treatment cell with and without spent lime. Riser pipe was installed after the photograph on the right was taken. The dark spots in the treatment cell are leaves.

6.0 Lime barrier monitoring results

6.1 Water quality

In 2012 and 2013, storm event water monitoring was conducted using an ISCO auto-sampler at the inlet and outlet (post treatment) of the spent lime cell. Area velocity meters were also installed to measure flow at the inlet and outlet, and a level sensor (In-Situ Level TROLL) placed within the treatment cell measured water level in the cell. Water samples from a total 13 storm events were collected from May 2012 through October 2013. Samples were not collected in the winter. Monitoring results for samples collected for chemical analysis are provided in Table 6-1 below and in Appendix C.

Although removal of ortho-phosphate was the intended target of the spent lime treatment system, the treatment system also removed particulate phosphorus as well as suspended solids. Removal of ortho-phosphate was high (74.4 percent), and the average concentration leaving the treatment cell was 0.031 mg/L. However, in 2012 the concentration of ortho-phosphorus in treated stormwater was <0.020 mg/L for nearly all storm events. It is likely that in 2013, several storms were large enough to bypass treatment through the top of the rise pipe and that the untreated water subsequently mixed with treated stormwater. This likely led to the appearance of reduced performance compared to 2012.

Table 6-1 Average concentration of several constituents in stormwater prior to and after treatment by the spent lime treatment cell

Parameter	Number of Storm Event Samples	Into Cell (untreated)	Out of Cell (treated)	% Removal
Total Phosphorus (mg/L)	13	0.360	0.124	65.6
Total Dissolved Phosphorus (mg/L)	11	0.151	0.054	63.9
Ortho Phosphate (mg/L)	12	0.121	0.031	74.4
Total Suspended Solids (mg/L)	12	117	50	57.1
Aluminum (mg/L)	13	2.41	1.03	57.2
Calcium (mg/L)	13	9.01	6.71	25.5
Iron (mg/L)	13	2.78	1.11	60.2
Lead (μg/L)	4	8.30	1.13	86.4
Zinc (μg/L)	4	97.1	32.6	66.4
Copper (μg/L)	4	19.7	13.5	31.4

It is estimated that 66 percent of the particulate phosphorus was also removed from stormwater. Any organic phosphorus that is captured by the cell as a particulate and subsequently decays into ortho-

phosphate will likely be readily bound by calcium. This is an additional benefit of this system in that it is not likely that the treatment cell will be a net contributor of phosphorus during the lifetime of the cell. This is unlike many pond and wetland systems that eventually become net contributors of phosphorus at some point in the best management practice (BMP) lifecycle.

It is notable that the treatment system was also capable of removing metals. Aluminum, calcium, and iron were removed from stormwater even though these constituents were the primary chemical constituents of the spent lime material. There was also significant removal of lead, zinc, and copper. It is hypothesized that the high pH in the spent lime cell facilitates metal carbonate complex formation. These results suggest that spent lime may also be specifically used to control metals in runoff from highways and other roadways.

Examining the data provided in Appendix C, one can observe that for certain constituents the treatment cell appeared to behave differently in 2012—the year immediately following the placement of spent lime in the cell—compared to 2013. In 2012, the treatment cell removed predominantly dissolved othophosphorus while it removed very little particulate phosphorus. In that year, it did not appear that much TSS, calcium, aluminum, or iron were removed. It appears that in 2012, most of the calcium, aluminum, and iron entering the treatment cell was dissolved. In 2013, the treatment cell removed suspended solids, both total and dissolved phosphorus, calcium, aluminum, iron, copper, lead, and zinc. There was a strong correlation between total suspended solids and metals (i.e., calcium, aluminum, iron, copper, lead, and zinc) concentration. It is possible that the maintenance performed on the treatment system (see Figure 6-1) had the effect of changing the structure of the lime in the barrier, leading to greater filtration capacity. An additional hypothesis is that when the material was initially placed with the backhoe, the open spaces between lime chunks were large. After periods of wetting and drying, settling time, and mixing with maintenance, the pore spaces perhaps decreased, causing the lime to act as a better filter.

Figure 6-1 Maintenance of the treatment cell with the use of a shovel to mix the lime.

6.2 Aquatic toxicity

Because the spent lime material had not been previously used as a stormwater treatment medium, treated and untreated stormwater was collected during two storm events and tested in a laboratory for aquatic toxicity. Standard U.S. Environmental Protection Agency (EPA) methodologies were followed to test for chronic aquatic toxicity using a sensitive test species called *Ceriodaphnia dubia* (e.g., a zooplankton, often described as a water flea). For the May 21, 2012 test, mean young production (see Table 6-2 for definition) was greater for treated stormwater than for untreated stormwater. This indicates that the treated stormwater was slightly less toxic than the untreated stormwater. For the June 19, 2012 test, mean young production was lower for treated stormwater than for untreated stormwater. In both cases, however, the spent lime material did not produce unwanted toxic conditions in the treated stormwater. Overall, these tests suggest that the use of spent lime will not cause unintended aquatic toxicity in water receiving spent lime-treated stormwater as long as the contact time is maintained at an appropriate level.

Table 6-2 Results of chronic seven-day laboratory toxicity tests conducted with Ceriodaphnia dubia and stormwater collected at the inlet and the outlet of the spent lime treatment cell

Stormwater Sampling Date	Water Source	% Survival	Mean Young Production ¹	Average pH During Testing	Total Hardness (mg/L as CaCO ₃)	Total Alkalinity (mg/L as CaCO ₃)	Specific Conductance (µmhos/cm)
	Laboratory Control	90	18.7	7.42	104	88	227
5/21/2012	Stormwater In ²	100	20.3	6.78	20	8	95
	Stormwater Out ³	100	25.9	7.34	92	92	576
	Laboratory Control	100	17.7	7.59	112	84	222
6/19/2012	Stormwater In ²	100	26.9	6.91	8	24	42
	Stormwater Out ³	90	24.8	7.42	116	108	469

⁽¹⁾ **Mean young production** is the number *Ceriodaphnia dubia* neonates produced per female adult during the course of the test.

Toxicity testing conducted in accordance with US EPA methodologies (Short-Term Methods For Estimating the Chronic Toxicity of Effluents and Receiving Water to Freshwater Organisms, EPA-821-R-02-013, October 2002).

6.3 Hydrology and hydraulics

According to Darcy's Law, flow through a medium such as spent lime is largely a function of the hydraulic conductivity of the media, hydraulic head, and flow path length. Hence, the dimensions of a treatment cell as well as the hydraulic conductivity of spent lime (discussed in more detail in Section 6.3.1) dictate the maximum flow-through capacity of the treatment cell as well as the water level in the cell at a given time during a storm event. The porosity and hydraulic conductivity of spent lime coupled with the cell dimensions determine contact time (Tc) between the stormwater and the lime.

Just prior to maintenance of the treatment cell in spring 2013, a core tube was pushed into the lime material of the spent lime cell and an intact core sample of lime was collected. The volume of the whole sample was estimated by the core dimensions and the depth of lime collected. The volume of the solids in the core sample was estimated by solids displacement of water when submerged in a graduated cylinder. The measurements were used to calculate the porosity of the material, which was 0.45. Porosity was needed to calculate contact time between water and spent lime in accordance with the following equation:

⁽²⁾ Stormwater In is stormwater that enters the spent lime treatment cell.

⁽³⁾ Stormwater Out is treated stormwater at the outlet of the spent lime treatment cell.

$$Eq. 2: Tc = \frac{A*D*n}{Q}$$

where:

Tc = contact time

 $A = L_cW_c$

D = water depth in the cell N = porosity of lime in the cell

Q =flow into the cell

Lc = cell length

Wc = average cell width

Hence, the dimensions of a treatment cell must be designed to facilitate maximum flow but also allow for enough contact time for calcium to react with ortho-phosphate. For the treatment cell constructed in the Ramsey-Washington Metro watershed (Maplewood), examples are provided below for the relationship between flow and water level in the treatment cell (Figure 6-2) as well as flow, water level, and contact time (Figure 6-3). The relationship between peak water level in the cell and flow will be different for the range of treatment cell designs that may be considered. The relationship below is applicable only to cells with the same dimensions and design as the one in this manuscript. Figure 6-3 shows that contact time changes throughout the course of each storm event. Contact time will vary also by storm event and the characteristic shape of the event (Table 6-3).

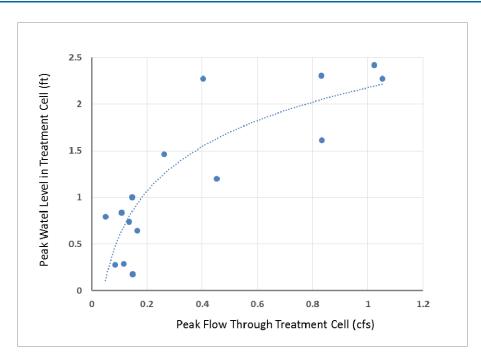


Figure 6-2 Relationship between peak water level in the spent lime treatment cell and peak flow through the cell

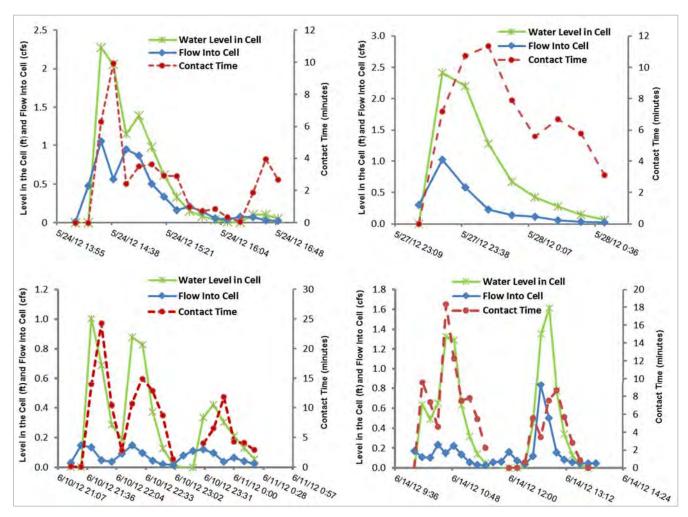


Figure 6-3 For selected storm events, graphical examples of the relationship between measured water level in the spent lime cell, flow into the cell, and the contact time of the stormwater and the spent lime material in the cell

Table 6-3 Hydrologic characteristics of the treatment cell for measured storm events in 2012

Storm Event	Matau Qualitu	Storm Front	Flow (cfs) into Cell Water Level (ft) in Cell Contact Time (mi				inutes)		
Date	Water Quality Monitoring Date	Storm Event Length (h)	Average	Peak	Average	Peak	Average	Maximum	Minimum
5/19/2012	5/21/2012	0.83	0.18	0.71	no data				
5/24/2012	5/25/2012	2.33	0.34	1.05	0.62	2.27	2.86	9.93	0.05
5/26/2012	none	1.50	0.11	0.26	0.62	1.47	9.02	14.26	2.40
5/27/2012	none	1.33	0.28	1.02	0.83	2.42	7.29	11.35	3.11
6/10/2012	6/11/2012	3.00	0.07	0.15	0.31	1.00	7.86	24.27	0.03
6/14/2012	none	3.83	0.14	0.83	0.44	1.61	5.53	18.35	0.01
6/16/2012	none	2.67	0.08	0.14	0.33	0.74	5.60	10.99	0.03
6/18/2012	6/19/2012	2.00	0.09	0.40	0.52	2.27	8.48	38.37	1.02
7/3/2012	none	0.50	0.06	0.15	0.05	0.17	1.94	6.59	0.01
7/13/2012	none	0.50	0.20	0.45	0.70	1.20	9.53	17.19	5.39
7/18/2012	none	1.33	0.22	0.83	1.20	2.31	14.69	27.57	1.24
7/24/2012	none	1.50	0.06	0.09	0.14	0.28	3.42	7.73	0.31
7/28/2012	none	0.33	0.06	0.11	0.44	0.83	9.32	13.46	4.21
7/29/2012	none	4.83	0.09	0.16	0.36	0.64	6.49	13.73	1.12
8/15/2012	none	0.50	0.03	0.05	0.38	0.79	19.84	27.44	7.42
9/17/2012	none	0.67	0.07	0.12	0.09	0.29	1.80	4.57	0.01

^{*}One storm event for July 13, 2012 was evaluated; the other events were omitted.

^{*}Flow through the overflow outlet was likely on July 21, 2012 with peak flow of 2.18 cfs measured downstream of the treatment cell. This flow includes infiltrated stormwater as well as water that bypassed the lime barrier and discharged through the overflow outlet.

^{*}Width of treatment cell as a function of depth in the cell is: width (ft) = 0.154*Depth^2+1.3*Depth+2.7177

^{*}Effective cell length estimated to be 60 feet total including both sides of the cell.

^{*}Porosity of the in-place spent lime is 0.45.

^{*}The water quality monitoring date is the date at which samples were collected and recorded.

Table 6-3 shows that contact time varied widely by storm event and during each storm event. The average contact time was less than 20 minutes for storms in 2012, but the average more typically ranged from 5 to 10 minutes.

6.3.1 Hydraulic conductivity

Fluid flow through porous media can be described by Darcy's Law which requires estimates of the hydraulic conductivity of the porous media. For the pilot scale field study in Maplewood, MN, the water level within the cell was recorded along with the flow rate out of the treatment system. The hydraulic conductivity of the in-place spent lime material was estimated by creating a model based on Darcy's Law (Equation 3 below) and using the available hydraulic monitoring data.

Eq. 3: Q = KiA

where:

Q = flow at a given location within the cell (volume/time)

 $A = hW (distance^2)$

h = water height at a given location within the cell (distance)

K = hydraulic conductivity (distance/time)

i = hydraulic gradient at a given location within the cell (unitless)

W =flow width parameter (circumference in polar coordinates), (distance)

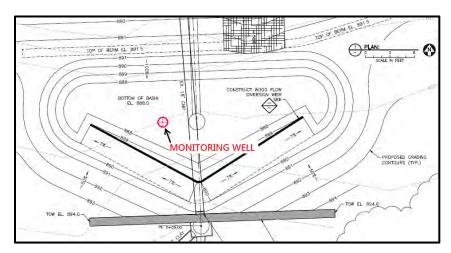


Figure 6-4 Construction plans for the spent lime treatment cell with the monitoring well location added

The model created is an unsteady model based on Darcy's Law in an unconfined, homogeneous porous media, in polar coordinates. The treatment cell system includes two inlets, divergent from each other, and one outlet in the center of the treatment cell (see Figure 6-5). The outlet is a 12-inch diameter hollow riser pipe with 12 1-inch diameter holes drilled in the wall near the bottom. The monitoring well was placed

approximately 3 feet from the outlet riser pipe. The water surface within the spent lime material is assumed to be radially symmetric about the center of the outlet riser pipe. The model domain is between the water level sensor in the monitoring well and the wall of the outlet riser pipe. The upstream (outer) boundary condition is the measured water level at the monitoring well. The downstream (inner) boundary condition is a calculated flow rate through the holes drilled in the riser pipe using an orifice flow equation. This equation uses a flow area of 9.4 square inches (12 1-inch diameter holes), 0.6 for the flow coefficient, and the water level above the holes at the wall of the outlet riser pipe to determine the flow into the pipe (out of the model domain). Within the model domain, velocity and flow are based on the hydraulic gradient in the system. As discussed previously, the porosity of the spent lime material is estimated to be 0.45, based on lab results of a core taken from the treatment system.

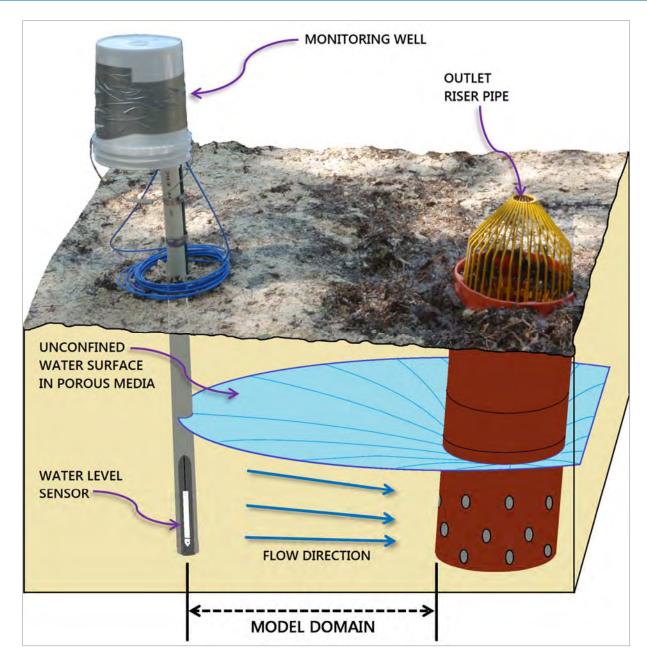


Figure 6-5 Schematic of the unconfined Darcy's Law model in polar coordinates including the actual monitoring well, outlet riser pipe, and spent lime material

Figure 6-6 shows a schematic of the developed model. The model was fixed at the upstream boundary by the measured water level. The flow leaving the system was calculated by the model and compared to the measured flow leaving the outlet riser pipe. The hydraulic conductivity was the unknown parameter that was modified to calibrate the model to the measured flow rate. If the hydraulic conductivity in the model was too high, the hydraulic gradient through the spent lime material would be shallow. If the upper boundary is fixed by the measured water level, the model would calculate a relatively high water level at the outlet riser pipe and therefore a relatively high flow rate leaving the riser pipe. Conversely, if the hydraulic conductivity in the model was too low, the hydraulic gradient through the spent lime material

would be steep, and the model would calculate a relatively low water level at the outlet riser pipe and therefore a relatively low flow rate leaving the riser pipe. Multiple storm events are observed in both the water level data and flow data. A few storms were selected for calibration of the hydraulic conductivity, which included both high and low flow rates and water levels. The hydraulic conductivity value that best fit the measured data ranged from approximately 0.1 to 0.35 feet per second. Figure 6-7 through Figure 6-9 show the comparison of the model to the measured flow rate data. On the right side is the time-series flow data in gallons per minute compared to the model results. The red line shows the model results, and the black open circles are the measured flow rates. On the left side is the elevation of the modeled water surface (phreatic surface) at the point in time of the end of the red line. The hydraulic conductivity is critical for appropriate sizing of future treatment cells.

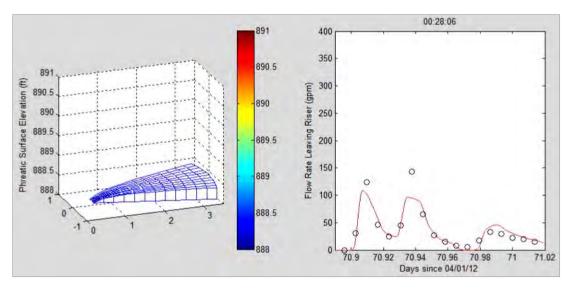


Figure 6-6 Model results compared to measured data around June 11, 2012

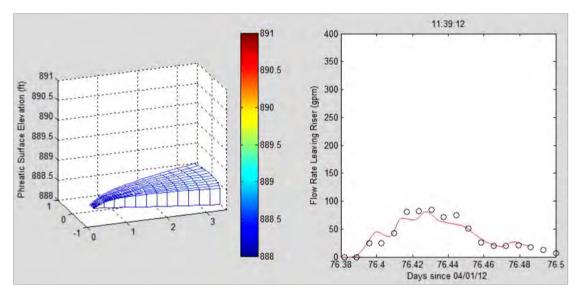


Figure 6-7 Model results compared to measured data around June 16, 2012

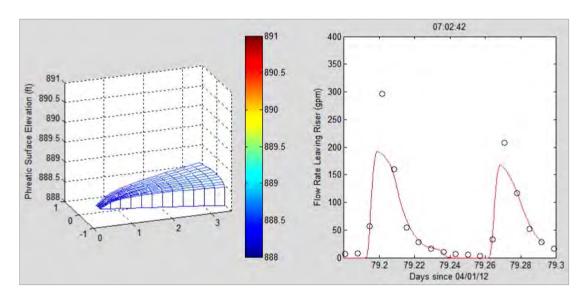


Figure 6-8 Model results compared to measured data around June 19, 2012

6.4 Sediment

Prior to initiation of this study, it was hypothesized that there may be some solid lime material or dissolved metals that may be transported out and subsequently downstream of the spent-lime cell. To evaluate the potential of downstream effects with the operation of the spent lime cell, sediment cores were taken in 2012 (two cores) and 2014 (four cores) in a pond that directly receives stormwater after treatment in the spent lime cell. Cores were sliced into 1 to 2 centimeter increments and analyzed for four phosphorus fractions (iron-bound phosphorus, calcium-bound phosphorus, aluminum-bound phosphorus, and organically bound phosphorus), aluminum, calcium, and iron (Appendix C). With respect

to calcium-bound, aluminum-bound, and organically bound phosphorus, it does not appear that the operation of the spent lime treatment cell for two years had any notable effect on these phosphorus fractions. Mobile phosphorus increased; however, this is likely due to the reduced flow through the pond during this study (flows were diverted from all other sources except the treatment cell) that then also led to reduced washout of phosphorus from sediments. Decaying organic phosphorus was then converted to mobile phosphorus and mobile phosphorus built up on the sediments. Iron and aluminum was not higher in the sediments collected in 2014, while calcium was actually lower in the 2014 sediments. This seems reasonable, given that the lime treatment cell actually reduced aluminum, iron, and calcium concentrations in the treated stormwater.

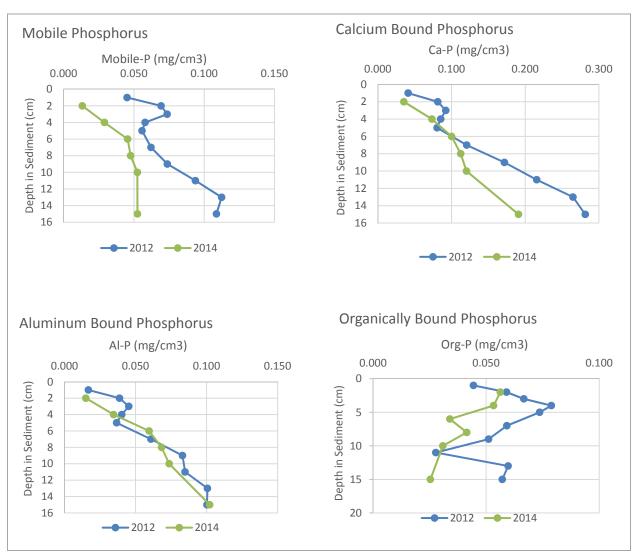


Figure 6-9 Phosphorus fractions in sediment collected in a pond downstream of the spent lime treatment cell

7.0 Conclusions and discussion

Spent lime, a byproduct of drinking water treatment, has properties enabling the material to bind or remove dissolved phosphorus (ortho-phosphate), particulate phosphorus, suspended solids, and metals. From monitoring data collected at a treatment cell with spent lime, it can be concluded that this material can remove phosphorus and metals to low levels, and in some cases, to levels below typical detection levels (ortho-phosphate). Based on aquatic toxicity tests using treated stormwater, it also appears that treated water will not be toxic to aquatic life if the treatment cells with spent lime are designed properly. The primary design parameters are hydraulic head and flow path length (cell length) and the condition that all water must drain out of the cell between storm events. Contact time between the spent lime and stormwater in the Maplewood, Minnesota, treatment cell varied throughout each storm event, with an average contact time of 5 to 10 minutes.

It is expected that spent lime can be used in a wide range of treatment designs and configurations. Future designs should consider the use of a pond or plunge pool to settle out sand, leaves, and sticks. This may help minimize the accumulation of material on the surface of the spent lime and also reduce the frequency of maintenance.

7.1 Acknowledgements

We would like to acknowledge the invaluable contribution of Cliff Aichinger, Eric Korte, and Dave Vlassen of the Ramsey-Washington Metro Watershed District in Saint Paul, Minnesota. Without Cliff Aichinger's willingness to test new and innovative stormwater treatment approaches, this project would not have occurred. Eric Korte and Dave Vlassen provided invaluable service in verifying that stormwater monitoring design and tasks were completed correctly.

8.0 References

- Dodds, W. K. 2003. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. J. Phycol. Vol. 39. pp. 840-849.
- Pilgrim, K. M. 2002. Evaluation of the potential benefits and adverse effects of alum treatment to remove phosphorus from lake inflows. Ph.D. Thesis. University of Minnesota.
- Barrett, M. (2003). Performance, cost, and maintenance requirements of Austin sand filters. *J. Water Resour. Plann. Manage.*, 129(3), 234–242.
- Stumm, W, and J. J. Morgan. 1996. Aquatic chemistry. Chemical equilibria and rates in natural waters. Third Edition. John Wiley and Sons.
- U.S. Environmental Protection Agency. October 2002. *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to Freshwater Organisms*. EPA-812-R-02-013.

Appendices

Appendix A

Data from the laboratory column test study

Test Details

Test #1

Test Date:	November 20, 2010	
Inner Diameter	(in)	3
Flow Area	(in^2)	7.07
RAW Pond Water TP	(ug/L)	N/A
RAW Pond Water TDP	(ug/L)	N/A
RAW Pond Water TRP	(ug/L)	N/A
RAW Pond Water SRP	(ug/L)	N/A
Settled TP	(ug/L)	217
Settled TDP	(ug/L)	N/A
Settled TRP	(ug/L)	136
Settled SRP	(ug/L)	34
Pond Water Turbidity	(NTU)	2.51
Pond Water pH	()	7

Variable	Units	Column 1
Material	()	Dried Lime
Mass into Column	(g)	300
Material Height	(in)	5.3
Time to 2 Liters	(min)	66.0
Flow Rate	(L/hr)	1.8
Flow Rate	(gpm)	8.01E-03
Infiltration Rate	(in/hr)	15.7
Residence Time	(min)	20.3
Residual Mass	(g)	300
Lime:Polymer Ratio	(X:1)	N/A
Lime Delivery Rate	(g/hr)	0
Lime Delivery Rate	(g/L)	0
Dissolution Rate	(%/hr)	0%

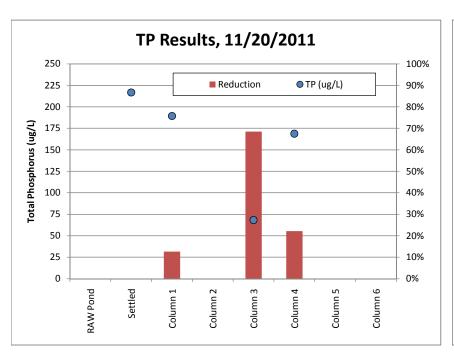
Final TP Conc.	(ug/L)	189.3
Final TDP Conc.	(ug/L)	N/A
Final TRP Conc.	(ug/L)	113.7
Final SRP Conc.	(ug/L)	22.2
TP Reduction	(%)	13%
TDP Reduction	(%)	0%
TRP Reduction	(%)	16%
SRP Reduction	(%)	34%
Turbidity	(NTU)	2.72
рН	()	7

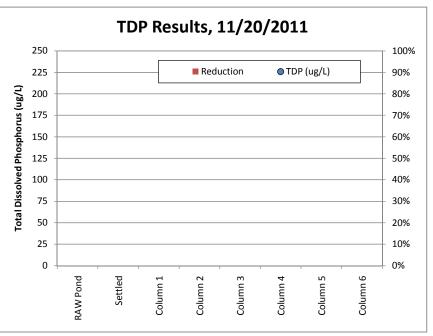
Column 2
PVA ~40,000
320
4.9
62.3
1.9
8.48E-03
16.6
17.7
295
2.98
24
13
8%

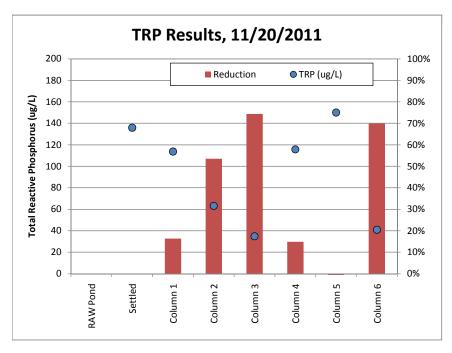
N/A
N/A
63.2
47.9
0%
0%
54%
0%
18.9
6

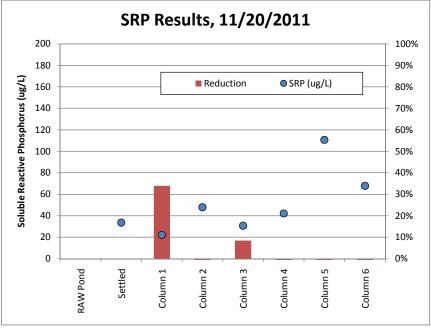
Column 3
Poly Acrylamide
400
4.4
62.0
1.9
8.52E-03
16.7
15.8
215
1.12
179
93
60%

N/A	68.3
N/A	N/A
53.2	34.9
17.9	30.8
0%	68%
0%	0%
54%	74%
0%	8%
L8.9	231
6	9
	•

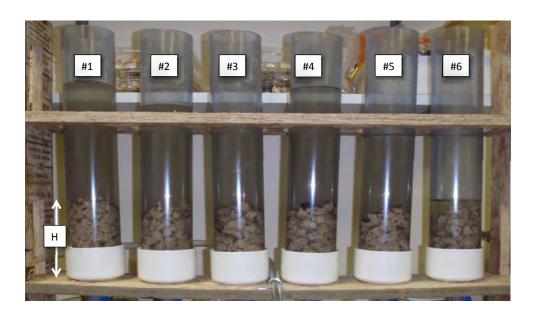

Column 4	Column 5
hemloc 411	Polyacrylic Acid
330	240
6.9	3.4
64.0	63.0
1.9	1.9
8.26E-03	8.39E-03
16.2	16.4
25.6	12.4
330	170
4.14	4.05
0	67
0	35
0%	33%


168.8 N/A 115.7 42.2 22% 0% 15% 0% 2.07


	N/A
	N/A
	150.1
	110.7
	0%
	0%
	0%
	0%
	582
	11
-	


Column 6
PVA ~6,000
340
5.4
61.3
2.0
8.62E-03
16.9
19.2
325
3.03
15
8
4%

N/A	
N/A	
41.0	
67.9	
0%	
0%	
70%	
0%	
32.3	



Test Details

Test #2

Test Date:	January 13, 2011	
Inner Diameter	(in)	3
Flow Area	(in^2)	7.07
RAW Pond Water TP	(ug/L)	620
RAW Pond Water TDP	(ug/L)	156
RAW Pond Water TRP	(ug/L)	57
RAW Pond Water SRP	(ug/L)	126
Settled TP	(ug/L)	162
Settled TDP	(ug/L)	156
Settled TRP	(ug/L)	69
Settled SRP	(ug/L)	120
Pond Water Turbidity	(NTU)	
Pond Water pH	()	6

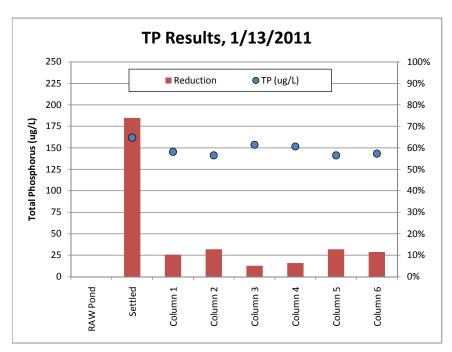
Variable	Units	Column 1
Material	()	Dried Lime
Mass into Column	(g)	300
Material Height	(in)	6
Time to 2 Liters	(min)	1200
Flow Rate	(L/hr)	0.1
Flow Rate	(gpm)	4.40E-04
Infiltration Rate	(in/hr)	0.9
Residence Time	(min)	417.0
Residual Mass	(g)	
Lime:Polymer Ratio	(X:1)	NA
Lime Delivery Rate	(g/hr)	15
Lime Delivery Rate	(g/L)	150
Dissolution Rate	(%/hr)	#NUM!

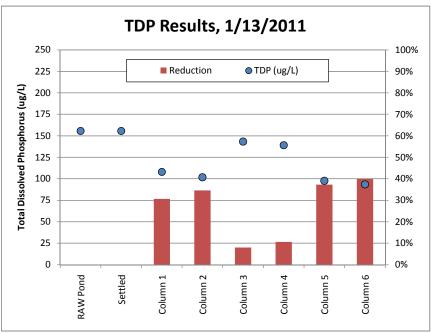
Final TP Conc.	(ug/L)	145.3
Final TDP Conc.	(ug/L)	108.0
Final TRP Conc.	(ug/L)	28.4
Final SRP Conc.	(ug/L)	14.6
TP Reduction	(%)	10%
TDP Reduction	(%)	31%
TRP Reduction	(%)	59%
SRP Reduction	(%)	88%
Turbidity	(NTU)	
pH	()	8.5

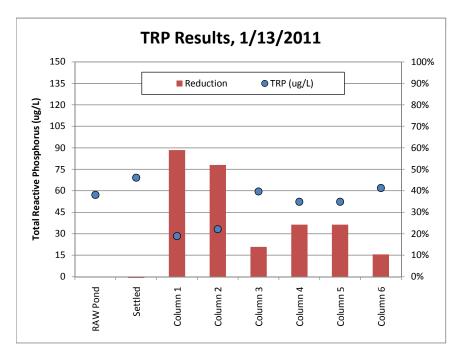
	Column 2
	Dried Lime
	300
	6
	600
	0.2
Ī	8.81E-04
	1.7
	208.5
	NA
	30
	150
	#NUM!

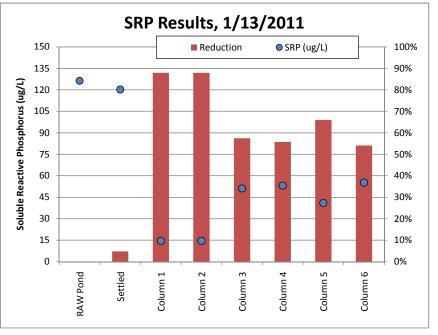
141.2
101.8
33.2
14.6
13%
35%
52%
88%
7.5

Column 3
Dried Lime
300
6
400
0.3
1.32E-03
2.6
139.0
NA
45
150
#NUM!

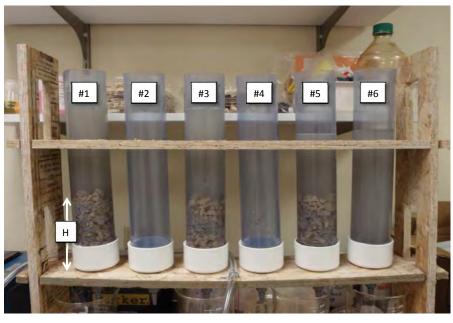

141.2	153.6
101.8	143.2
33.2	59.5
14.6	51.2
13%	5%
35%	8%
52%	14%
88%	57%
7.5	7


	_	
Column 4		Column 5
Dried Lime		Dried Lime
300		300
6		6
200		120
0.6		1.0
2.64E-03		4.40E-03
5.2		8.6
69.5		41.7
NA		NA
90		150
150		150
#NUM!		#NUM!


151.5	141.2
139.1	97.6
52.4	52.4
53.2	41.0
6%	13%
11%	37%
24%	24%
56%	66%
7	6.5
	-


	Column 6		
	Dried Lime		
	300		
	6		
	66.7		
	1.8		
	7.92E-03		
	15.5		
	23.2		
	NA		
	270		
	150		
	#NUM!		

143.2	
93.5	
61.9	
55.2	
12%	
40%	
10%	
54%	
6	


Test #3

Test Date:	January 20, 2011	7
Inner Diameter	(in)	3
Flow Area	(in^2)	7.07
RAW Pond Water TP	(ug/L)	380
RAW Pond Water TDP	(ug/L)	210
RAW Pond Water TRP	(ug/L)	NOT TESTED
RAW Pond Water SRP	(ug/L)	NOT TESTED
Settled TP	(ug/L)	290
Settled TDP	(ug/L)	210
Settled TRP	(ug/L)	NOT TESTED
Settled SRP	(ug/L)	NOT TESTED
Pond Water TSS	(mg/L)	36
Pond Water VSS	(mg/L)	14
Pond Water pH	()	7.7

Variable	Units	Column 1
Material	()	Lime / CC17
Mass of Material	(g)	300
Mass of CC-17	(g)	340
Material Height	(in)	6
Time to 2 Liters	(min)	600
Flow Rate	(L/hr)	0.2
Flow Rate	(gpm)	8.81E-04
Infiltration Rate	(in/hr)	1.7
Residence Time	(min)	208.5
Residual Mass	(g)	
Lime:Polymer Ratio	(X:1)	NA
Lime Delivery Rate	(g/hr)	30
Lime Delivery Rate	(g/L)	150
Dissolution Rate	(%/hr)	#NUM!

Final TP Conc.	(ug/L)	54.0
Final TDP Conc.	(ug/L)	50.0
Final TRP Conc.	(ug/L)	NOT TESTED
Final SRP Conc.	(ug/L)	NOT TESTED
TP Reduction	(%)	81%
TDP Reduction	(%)	76%
TRP Reduction	(%)	NOT TESTED
SRP Reduction	(%)	NOT TESTED
TSS	(mg/L)	2.5
VSS	(mg/L)	2.5
рН	()	7.9

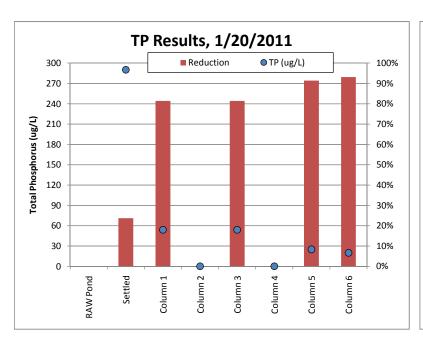
Column 2
X
X
X
X
X
X
X
X
Х
X
X
X
X
X

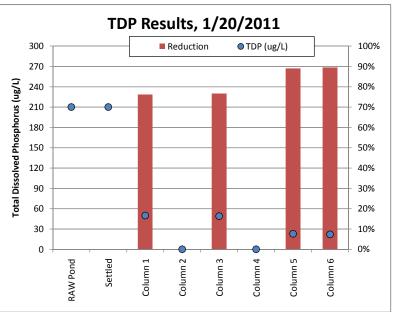
Х	150
Χ	#NUM!
X	54.0
Х	49.0
Х	NOT TESTED
Х	NOT TESTED
Х	81%
Х	77%
Х	NOT TESTED
Х	NOT TESTED
Χ	5
Х	2.5

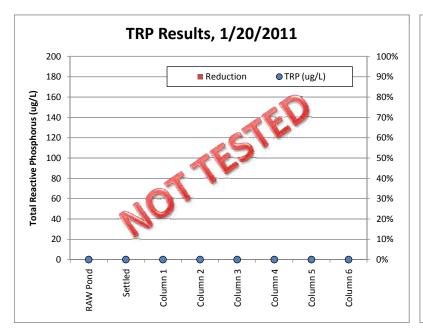
Column 3

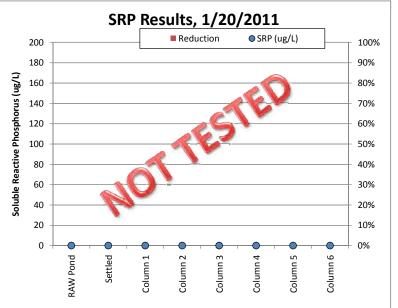
Lime / CC17

300 340 6 300 0.4 1.76E-03 3.5 104.2

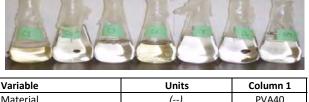

> NA 60


C	olumn -	4
	Χ	
	Χ	
	Χ	
	Χ	
	Χ	
	Χ	
	Χ	
	Χ	
	Χ	
	Χ	
	Χ	
	Χ	
	Χ	
	Χ	


Х	25.0
Х	23.0
Х	NOT TESTED
Х	NOT TESTED
Х	91%
Х	89%
X	NOT TESTED
Х	NOT TESTED
X	3.3
X	3.3
Х	7.6


Column 5		Column 6
Lime / CC17		CC17
300		0
340		340
6		6
120		240.0
1.0		0.5
4.40E-03		2.20E-03
8.6		4.3
41.7		83.4
NA		NA
150		0
150	I	0
#NUM!		#DIV/0!

20.0			
22.0			
NOT TESTED			
NOT TESTED			
93%			
90%			
NOT TESTED			
NOT TESTED			
3.3			
3.3			
8.1			



Test #4

Test Details

Test Date:	February 2, 2011	7
Inner Diameter	(in)	3
Flow Area	(in^2)	7.07
RAW Pond Water TP	(ug/L)	620
RAW Pond Water TDP	(ug/L)	210
RAW Pond Water TRP	(ug/L)	NOT TESTED
RAW Pond Water SRP	(ug/L)	NOT TESTED
Settled TP	(ug/L)	240
Settled TDP	(ug/L)	210
Settled TRP	(ug/L)	NOT TESTED
Settled SRP	(ug/L)	NOT TESTED
Pond Water TSS	(mg/L)	78
Pond Water VSS	(mg/L)	25
Pond Water pH	()	8.0

Variable	Units	Column 1
Material	()	PVA40
Mass of Material	(g)	245
Mass of CC-17	(g)	0
Material Height	(in)	6
Time to 2 Liters	(min)	600
Flow Rate	(L/hr)	0.2
Flow Rate	(gpm)	8.81E-04
Infiltration Rate	(in/hr)	1.7
Residence Time	(min)	208.5
Residual Mass	(g)	
Lime:Polymer Ratio	(X:1)	3
Lime Delivery Rate	(g/hr)	25
Lime Delivery Rate	(g/L)	123
Dissolution Rate	(%/hr)	#NUM!

Final TP Conc.	(ug/L)	130.0
Final TDP Conc.	(ug/L)	29.0
Final TRP Conc.	(ug/L)	NOT TESTED
Final SRP Conc.	(ug/L)	NOT TESTED
TP Reduction	(%)	46%
TDP Reduction	(%)	86%
TRP Reduction	(%)	NOT TESTED
SRP Reduction	(%)	NOT TESTED
TSS	(mg/L)	62
VSS	(mg/L)	62
pH	()	7.2

Column 2
PVA40
245
0
6
120
1.0
4.40E-03
8.6
41.7
3
123
123
#NUM!

45.0
23.0
NOT TESTED
NOT TESTED
81%
89%
NOT TESTED
NOT TESTED
10
5
8

46.0
17.0
NOT TESTED
NOT TESTED
81%
92%
NOT TESTED
NOT TESTED
5
5
7.5

Column 3

PVA40 245

0

6

40 3.0

1.32E-02

25.9

13.9

3

368

123

#NUM!

13	20.0
2	20.0
NOT	TESTED
NOT	TESTED
5	50%
9	00%
NOT	TESTED
NOT	TESTED
	38
	38
-	7 2

Column 4

PVA40 / CC17

245

500

6

600

0.2

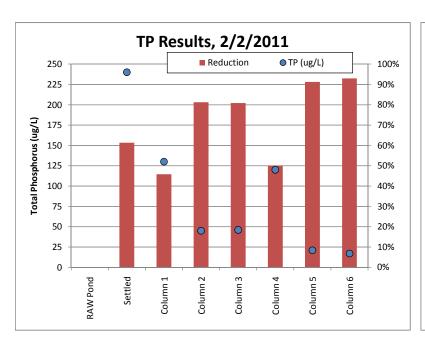
8.81E-04

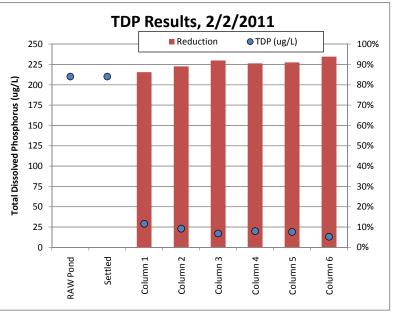
1.7

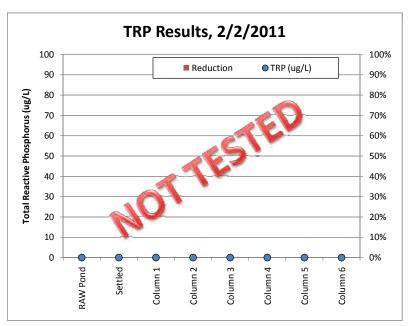
208.5

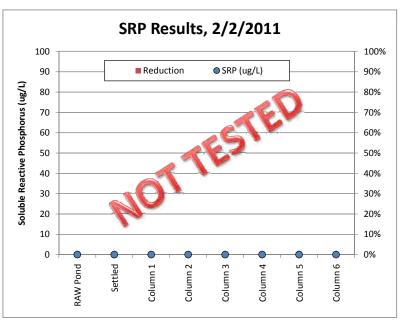
3

25


123


#NUM!


21.0
19.0
NOT TESTED
NOT TESTED
91%
91%
NOT TESTED
NOT TESTED
13
5
7.2


	_	
Column 5		Column 6
PVA40 / CC17		PVA40 / CC17
245		245
500		500
6		6
120		25.0
1.0		4.8
4.40E-03		2.11E-02
8.6		41.4
41.7		8.7
3		3
123		588
123		123
#NUM!		#NUM!

17.0
13.0
NOT TESTED
NOT TESTED
93%
94%
NOT TESTED
NOT TESTED
5
2.5
7.6

Test #5

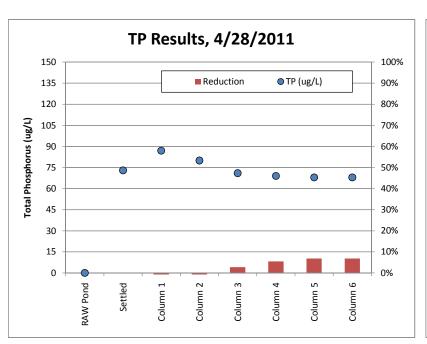
Test Date:	April 28, 2011	
Inner Diameter	(in)	3
Flow Area	(in^2)	7.07
RAW Pond Water TP	(ug/L)	NOT TESTED
RAW Pond Water TDP	(ug/L)	NOT TESTED
RAW Pond Water TRP	(ug/L)	NOT TESTED
RAW Pond Water SRP	(ug/L)	NOT TESTED
Settled TP	(ug/L)	73
Settled TDP	(ug/L)	28
Settled TRP	(ug/L)	NOT TESTED
Settled SRP	(ug/L)	28
Pond Water Turbidity	(NTU)	
Pond Water pH	()	

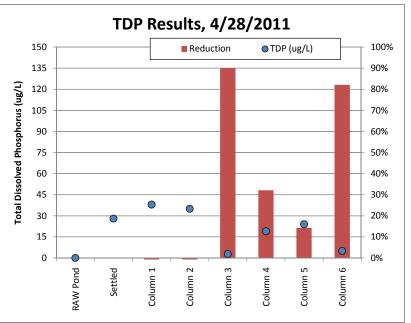
Variable	Units	Column 1
Material	()	PVA40 / CC17
Mass of Material	(g)	254.91
Mass of CC-17	(g)	358.5
Material Height	(in)	3.5
Time to 2 Liters	(min)	790
Flow Rate	(L/hr)	0.15
Flow Rate	(gpm)	6.69E-04
Infiltration Rate	(in/hr)	1.3
Residence Time	(min)	160.1
Residual Mass	(g)	250
Lime:Polymer Ratio	(X:1)	10
Lime Delivery Rate	(g/hr)	0
Lime Delivery Rate	(g/L)	2
Dissolution Rate	(%/hr)	0%

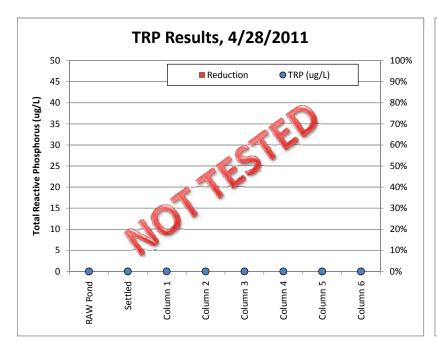
(ug/L)	87.0
(ug/L)	38.0
(ug/L)	NOT TESTED
(ug/L)	3.7
(%)	0%
(%)	0%
(%)	NOT TESTED
(%)	87%
(NTU)	
()	
	(ug/L) (ug/L) (ug/L) (ug/L) (%) (%) (%) (%) (NTU)

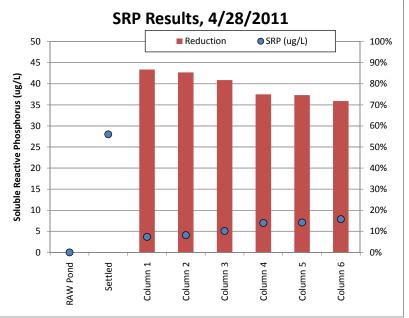
-	
	Column 2
I	PVA40 / CC17
	254.94
ſ	357.4
	3.5
	260
	0.46
	2.03E-03
	4.0
	52.7
	250
	10
l	1
	2
ĺ	0%

80.0	
35.0	
NOT TESTED	
4.1	
0%	
0%	
NOT TESTED	
85%	

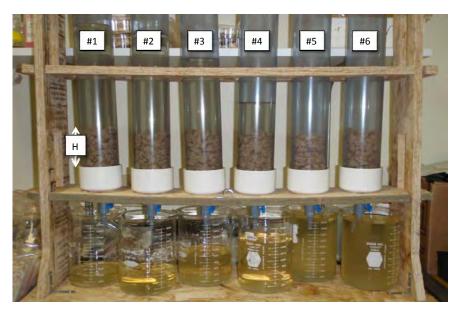

Column 3	Column 4
PVA40 / CC17	PVA40 / CC17
254.96	254.93
355.6	357.8
3.5	3.5
112	65
1.07	1.85
4.72E-03	8.13E-03
9.2	15.9
22.7	13.2
250	250
10	10
3	5
2	2
1%	2%


71.0		69.0
2.8	ĺ	19.0
OT TESTED		NOT TEST
5.1		7.0
3%	Ĩ	5%
90%		32%
OT TESTED		NOT TEST
82%	Ĩ	75%


Column 5	Column 6
VA40 / CC17	PVA40 / CC17
254.78	255.01
356.5	358.1
3.5	3.5
40	24.0
3.00	5.00
1.32E-02	2.20E-02
25.9	43.2
8.1	4.9
250	250
10	10
7	13
2	3
3%	5%


68.0 24.0 NOT TESTED 7.1 7% 14% **NOT TESTED** 75%

68.0
5.0
NOT TESTED
7.9
7%
82%
NOT TESTED
72%



Test #6

Test Date:	July 7, 2011	
Inner Diameter	(in)	3
Flow Area	(in^2)	7.07
RAW Pond Water TP	(ug/L)	181
RAW Pond Water TDP	(ug/L)	97
RAW Pond Water TRP	(ug/L)	NOT TESTED
RAW Pond Water SRP	(ug/L)	15
Settled TP	(ug/L)	190
Settled TDP	(ug/L)	114
Settled TRP	(ug/L)	NOT TESTED
Settled SRP	(ug/L)	19
Pond Water TSS	(mg/L)	5.5
Pond Water VSS	(mg/L)	< 5.0
Pond Water pH	()	7.3
Pond Conductivity	(uS)	1309

Column 4

PVA40 / CC17

242.68

330

3.5

106

1.13

4.98E-03

9.8 21.5

6

118

104

#NUM!

Variable	Units	Column 1
Material	()	PVA40 / CC17
Mass of Material	(g)	242.68
Mass of CC-17	(g)	330
Material Height	(in)	3.5
Time to 2 Liters	(min)	326
Flow Rate	(L/hr)	0.37
Flow Rate	(gpm)	1.62E-03
Infiltration Rate	(in/hr)	3.2
Residence Time	(min)	66.1
Residual Mass	(g)	
Lime:Polymer Ratio	(X:1)	6
Lime Delivery Rate	(g/hr)	38
Lime Delivery Rate	(g/L)	104
Dissolution Rate	(%/hr)	#NUM!

Final TP Conc.	(ug/L)	154.0
Final TDP Conc.	(ug/L)	95.7
Final TRP Conc.	(ug/L)	NOT TESTED
Final SRP Conc.	(ug/L)	9.1
TP Reduction	(%)	19%
TDP Reduction	(%)	16%
TRP Reduction	(%)	NOT TESTED
SRP Reduction	(%)	52%
TSS	(mg/L)	6.5
VSS	(mg/L)	6.0
рН	()	9.2
Conductivity	(uS)	2845

Column 2
PVA40 / CC17
242.63
330
3.5
213
0.56
2.48E-03
4.9
43.2
6
59
104
#NUM!

153.0
94.2
NOT TESTED
9.3
19%
17%
NOT TESTED
51%
< 5.0
< 5.0
9.2
2560

Column 3	
PVA40 / CC17	
242.66	
330	
3.5	
163	
0.74	
3.24E-03	
6.4	
33.0	
6	
77	
104	
#NUM!	

154.0	150.0
95.7	98.1
NOT TESTED	NOT TESTED
7.1	12.0
19%	21%
16%	14%
NOT TESTED	NOT TESTED
63%	37%
6.5	6.5
< 5.0	< 5.0
9.1	9.0
2405	2245

Column 5
PVA40 / CC17
242.65
330
3.5
57.8
2.08
9.14E-03
17.9
11.7
6
216
104
#NUM!

156.0	
105.0	
NOT TESTED	
7.6	
18%	
8%	
NOT TESTED	
60%	
60% 8.0	
8.0	
8.0 5.0	

#NUM!
162.0
104.0
NOT TESTED
7.7
15%
9%
NOT TESTED
59%
6.5
< 5.0
8.1
1752

Column 6

PVA40 / CC17

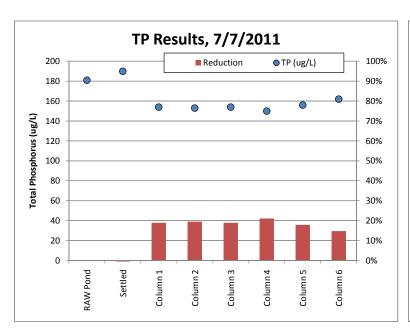
242.65

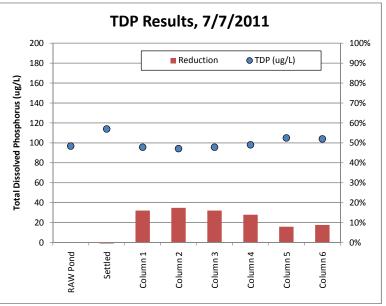
330

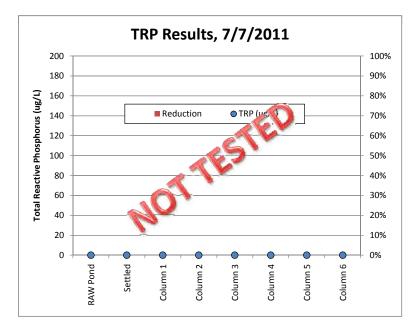
3.5

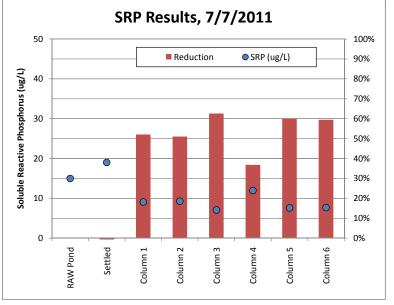
33.4

3.59


1.58E-02 31.0


6.8


6


374

104

Test #7

Test Date:	September 13, 2011	
Inner Diameter	(in)	3
Flow Area	(in^2)	7.07
RAW Pond Water TP	(ug/L)	250
RAW Pond Water TDP	(ug/L)	120
RAW Pond Water TRP	(ug/L)	NOT TESTED
RAW Pond Water SRP	(ug/L)	27
Settled TP	(ug/L)	180
Settled TDP	(ug/L)	120
Settled TRP	(ug/L)	NOT TESTED
Settled SRP	(ug/L)	28
Pond Water TSS	(mg/L)	7.5
Pond Water VSS	(mg/L)	5
Pond Water pH	()	7.2
Pond Conductivity	(uS)	747

Variable	Units	Column 1
Material	()	Lime
Mass of Material	(g)	300
Mass of CC-17	(g)	500
Material Height	(in)	6
Time to 2 Liters	(min)	560
Flow Rate	(L/hr)	0.21
Flow Rate	(gpm)	9.44E-04
Infiltration Rate	(in/hr)	1.8
Residence Time	(min)	194.6
Residual Mass	(g)	Not Tested
Lime:Polymer Ratio	(X:1)	Not Tested
Lime Delivery Rate	(g/hr)	Not Tested
Lime Delivery Rate	(g/L)	Not Tested
Dissolution Rate	(%/hr)	Not Tested

Final TP Conc.	(ug/L)	150.0
Final TDP Conc.	(ug/L)	110.0
Final TRP Conc.	(ug/L)	NOT TESTED
Final SRP Conc.	(ug/L)	41.0
TP Reduction	(%)	17%
TDP Reduction	(%)	8%
TRP Reduction	(%)	NOT TESTED
SRP Reduction	(%)	0%
TSS	(mg/L)	5.0
VSS	(mg/L)	5.0
рН	()	9.3
Conductivity	(uS)	1247

Γ	Column 2
Ī	Lime
	300
	500
	6
Ĺ	360
	0.33
Ĺ	1.47E-03
L	2.9
L	125.1
L	Not Tested
L	Not Tested
L	Not Tested
	Not Tested
L	Not Tested

120.0 92.0 NOT TESTED

6.3
33%
23%
NOT TESTED
78%
5.00
5.0
9.3
1210

Not Tested
120.0
91.0
NOT TESTED
20.0
33%
24%
NOT TESTED
29%
6.0
5.0
9.3
1080

Column 3

Lime

300

500

6

158

0.76

3.34E-03

6.6

54.9

Not Tested

Not Tested

Not Tested

Not Tested

Column 4	ļ.
Lime	
300	
500	
6	
106	
1.13	
4.98E-03	
9.8	
36.8	
Not Teste	d

vot resteu	Not resteu
Not Tested	Not Tested
	•
130.0	160.0
95.0	100.0
OT TESTED	NOT TESTED
17.0	19.0
28%	11%
21%	17%
OT TESTED	NOT TESTED
39%	32%
5.5	8.5
5.0	5.0
9.3	9.2
1081	1001

Column 6
Lime
300
500
6
28.0
4.29
1.89E-02
37.0
9.7
Not Tested

Column 5

Lime

300

500

6

72.0

1.67

7.34E-03

14.4

25.0

Not Tested

Not Tested

Not Tested

Not Tested

130.0		
92.0		
NOT TESTED		
20.0		
28%		
23%		
NOT TESTED		
29%		
10.0		
5.0		
9.0		
9.0		
892		

Toxicity tests results conducted with treated water from the April 28, 2011 column tests with polyvinyl alcohol, test number 5

TOXICITY TEST RESULTS

PERMEABLE REACTIVE SPENT LIME BARRIER

Report Date: May 12, 2011

Project No. 11-106

Prepared for:

Barr Engineering 4700 W. 77th Street Minneapolis, MN 55435

PROJECT: ACUTE TOXICITY TESTING

PERMEABLE REACTIVE SPENT LIME BARRIER

PROJECT NUMBER: 11-106

TOXICITY TEST RESULTS

INTRODUCTION:

This report presents the results of toxicity testing on water samples received by Environmental Toxicity Control (ETC) on May 2, 2011. The samples were water samples from the Permeable Reactive Spent Lime Project. Mr. Keith Pilgrim of Barr Engineering requested that we conduct acute toxicity tests on the samples. The scope of our services was limited to conducting 48-hour static renewal acute toxicity tests using the invertebrate, *Ceriodaphnia dubia*, in the laboratory.

SUMMARY:

All C. dubia survived the 48 hour acute tests.

TEST METHODS:

Tests were conducted in accordance with the procedures outlined in <u>Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms</u>, Fourth Edition, EPA-821-R-02-013.

Testing was started on 5/03/11.

RESULTS:

Toxicity test results are summarized in Table 1 and test conditions are summarized in Table 2.

QUALITY ASSURANCE AND QUALITY CONTROL:

Satisfactory laboratory performance on an ongoing basis is demonstrated by conducting at least one acceptable toxicity test per month with a reference toxicant. Control charts for a reference toxicant and successive endpoints (LC50 and IC25) are plotted to determine if results are within prescribed limits. Results from our most recent reference tests are shown in the following table:

Reference Toxicity Test		
Species	LC_{50}	Test Date
Ceriodaphnia dubia	2.14 g/L NaCl	4/26/11

Our results are within range of EPA expected results for the type of tests conducted.

Test methods and procedures are documented in ETC's Standard Operating Procedures (SOPs). Test and analysis protocols are reviewed by ETC's Quality Assurance/Quality Control Officer. Procedures are documented and followed as written. Any deviation from a QA/QC procedure is documented and kept in the project file. During this project, no deviation in method was warranted.

ENVIRONMENTAL TOXICATY CONTROL

Walter Koenst Bioassay Manager

Table 1. Survival of Ceriodaphnia dubia

Sample ID	% Survival
Control	100
Raw Storm Water	100
Column 1	100
Column 2	100
Column 3	100
Column 4	100
Column 5	100
Column 6	100
Organism Age:	<24 hours

Table 2. Summary of Chemical and Physical Data of Toxicity Tests

Test: Effluen	t w/o CO ₂					
Sample ID	Нq	Dissolved Oxygen (mg/L)	°C	Total Hardness (mg/L)	Total Alkalinity (mg/L)	Conductivity (µmhos/cm)
Control	7.99 - 8.13	8.1 - 8.6	25	96	64	326
Raw Storm	7.64 - 8.32	8.2 - 11.3	25	176	116	634
Column 1	8.04 - 8.33	7.9 - 10.0	25	1088	500	1943
Column 2	8.17 - 8.58	7.8 - 10.5	25	812	400	1580
Column 3	8.23 - 8.42	7.6 - 10.3	25	656	320	1354
Column 4	8.23 - 8.39	7.7 - 10.2	25	540	332	1205
Column 5	8.07 - 8.34	7.6 - 10.6	25	416	240	1038
Column 6	8.09 - 8.37	7.4 - 10.3	25	388	232	977

Client: Barr Engineering	Project Number: \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Test Type: Acute	Species: Ceriodaphnia Lubia	

Day: Day: Parameter Recon Raw Column Colu						Samı	ole ID				Remarks
Dissolved Oxygen (mg/l) S-W 11-3 10-0 10-5 10-3 10-10 10-3 Date: Temperature (°C) 25-0 25-0 25-0 25-0 25-0 25-0 S / 3 / 11 Conductivity (µmhos) 32-W 32-W 194-3 1560 1354 12-65 1338 977 Analyst: Total Alkalinity (mg/l) OU 11/0 500 400 32-0 33-2 24-0 2-3-2 Total Hardness (mg/l) QU 11/0 10/08 8/12 05-W 54-0 41-W 300 Total Ammonia (mg/l) Day: 1 DH 01/08 8/12 05-W 54-0 41-W 300 Day: 1 DH 0.00 6.728 8.04 8.17 8.23 8.25 8.27 8.30 Date: Temperature (°C) 25-3 25-3 25-3 25-3 25-3 25-3 25-3 S / 4 / 11 Conductivity (µmhos) Date: Total Alkalinity (mg/l) Total Hardness (mg/l) Date: Temperature (°C) 25-0 25-0 25-0 25-0 25-0 25-0 Date: Temperature (°C) 25-0 25-0 25-0 25-0 25-0 25-0 S / 4 / 11 Conductivity (µmhos) Date: Temperature (°C) 25-0 25-0 25-0 25-0 25-0 25-0 S / 4 / 11 Conductivity (µmhos) Date: Temperature (°C) 25-0 25-0 25-0 25-0 25-0 25-0 25-0 Date: Temperature (°C) 25-0 25-0 25-0 25-0 25-0 25-0 Date: Temperature (°C) 25-2 25-2 25-2 25-2 25-2 25-2 25-2 25-2 S / 5 / 11 Conductivity (µmhos) Date: Temperature (°C) 25-2 25-2 25-2 25-2 25-2 25-2 25-2 25-2 25-2 25-2 25-2 Date: Temperature (°C) 25-2 25	Day/Date/Analyst	Parameter	Recon	1 '		ŀ		1	ł .	1 (
Date: Temperature (**C) 25-0	Day:	рH	7.99	7.64	6.33	6.50	8.42	8.39	8.12	8.14	
S / 3 / 1 Conductivity (µmhos) 32	U	Dissolved Oxygen (mg/l)	8-6	11.3	10.0	10.5	10.3	10.2	10.0	10.3	
Analyst: Total Alkalinity (mg/l)	Date:	Temperature (°C)	25.0	25.0	75-0	25.0	25.0	25.0	25.0	25.0	
Total Hardness (mg/l)	5/3/11_	Conductivity (µmhos)	326	634	1943	1580	1354	1205	1838	977	
Total Armonia (mg/l) PH 8.00 8.78 8.04 8.17 8.23 8.25 8.27 8.30 Day: pH 8.00 8.78 8.04 8.17 8.23 8.25 8.27 8.30 Date:	Analyst:	Total Alkalinity (mg/l)	104	1110	500	400	320	332	240	232	
Day: 1	KM	Total Hardness (mg/l)	96	176	1008	812	656	540	416	308	
Date: Temperature (°C) 25.3 2	, (Total Ammonia (mg/l)									
Date: Temperature (°C) 25.3 2	Day: 1	pH	8.06	8.28	8.04	8.17	8.23	8.25	8.27	8.30	
Date: Temperature (**C) 25.3	- 1	Dissolved Oxygen (mg/l)			T .						
Total Alkalinity (mg/l) Total Hardness (mg/l) To	Date:	Temperature (°C)								25.3	
Day: pH 9.13 1.90 8.14 8.43 8.30 8.29 8.07 9.09	5/4/11	Conductivity (µmhos)									
Day: pH 9.13 7.90 8.14 8.43 8.30 8.29 8.07 9.09	Analyst:	Total Alkalinity (mg/l)									
New Dissolved Oxygen (mg/l) 9.4 9.4 9.3 9.2 9.2 9.1 9.1 9.1	K-10/1	Total Hardness (mg/l)									
Dissolved Oxygen (mg/l) 9.W 9.W 9.3 9.2 9.7 9.1 9.1	Day:	pH	8.13	7.90	8-14	8.43	8.30	8.29	8.07	8.09	
S / Y / 1 Conductivity (µmhos)	New	Dissolved Oxygen (mg/l)	8.4			9.2	1		9-1		
Analyst: Yew Total Alkalinity (mg/l) Image:	Date:	Temperature (°C)	25.0	25.0	25.0	25.0	25.0	22.0	25.0	25,0	
Day: 2	5/4/11	Conductivity (µmhos)									
Day: 2	Analyst:	Total Alkalinity (mg/l)									
Fiv (Λ) Dissolved Oxygen (mg/l) % - \ 8 - \ 2 - 7.9 7.9 7.6 7.1 7.4 7.4 Date: Temperature (°C) 25 - 2 <td>×W.</td> <td>Total Hardness (mg/l)</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	×W.	Total Hardness (mg/l)	<u> </u>								
Date: Temperature (°C) 25·2 <td>Day: 2</td> <td>pH</td> <td>8-11</td> <td>8.32</td> <td>6.09</td> <td>8.18</td> <td>8.29</td> <td>8.23</td> <td>8.34</td> <td>8.37</td> <td></td>	Day: 2	pH	8-11	8.32	6.09	8.18	8.29	8.23	8.34	8.37	
Date: Temperature (°C) 25·2 <td>Final</td> <td>Dissolved Oxygen (mg/l)</td> <td>8-1</td> <td>8.2</td> <td>7.9</td> <td>7.0</td> <td>7.6</td> <td>7.7</td> <td>7.6</td> <td>7.4</td> <td></td>	Final	Dissolved Oxygen (mg/l)	8-1	8.2	7.9	7.0	7.6	7.7	7.6	7.4	
Analyst: Total Alkalinity (mg/l) ————————————————————————————————————		Temperature (°C)	25.2	25-2	25.2	25.2	25.2	25.2	25.2	25.2	
Analyst: Total Alkalinity (mg/l) ————————————————————————————————————	5/5/11	Conductivity (µmhos)									
Day: pH	Analyst										
Dissolved Oxygen (mg/l)	kw	Total Hardness (mg/l)									
Date: Temperature (°C) / / Conductivity (μmhos) Analyst: Total Alkalinity (mg/l)	Day:	pН									
/ / Conductivity (µmhos) Analyst: Total Alkalinity (mg/l)		Dissolved Oxygen (mg/l)									
Analyst: Total Alkalinity (mg/l)	Date:	Temperature (°C)									
	1 1	Conductivity (µmhos)									
Total Hardness (mg/l)	Analyst:	Total Alkalinity (mg/l)									
/r odd thannord (ms)		Total Hardness (mg/l)									

Bio.102(2)

ACUTE TOXICITY TEST SURVIVAL DATA

Client: Barr Engineering Project # 11-100								Species/Age: ('errodaphnia dubia / <24h.							
Date/Time/A		0 Hour	24 Hou	5(4/11	1415 S 48 Hou	18/1	72 Hou		96 Hou	,	Remarks/Observations				
Conc.	Rep	# of Org.	Alive	Dead	Alive	Dead	Alive	Dead	Alive	Dead					
Control	A	(C)	5	0	5	0									
	В	5	5	0	5	0									
	С	5	5	0	<u>5</u>	0				•					
	D	W W W	5	Ò	5	0									
Raw	A	7	5	0	5	0									
Storm	В	5	5	0	5	0]						
1 10 10 10 10 10 10 10 10 10 10 10 10 10	С	5	5	0	5	0									
	D	555	5	0	5	0									
Column	A	5	5	0	5	0									
\	В	5555	5	0	5	0									
1	С	9	5	0	5	0									
	D	5	5	0	5	0									
Column	A		5	Ð	5	0									
2	В	555	5	0	5	0									
	С	5	5	0	5	0									
	D	5	5	0	5	O									
column	A	S	5_	0	5	Ō									
3	В		S	0	5	0									
	С	S	S	0	S	0									
	D	5	S	Q	5	0		-							
Column	A	\$ \$ \$	6	0	5	0									
4	В)	5	0	S	0									
	С	S	5	0	S	0									
	D	5	5	0	5	Ð									
Column	A	S	5	0	5	Q									
5	В			Õ	5	0									
	С	5	5	0	5	0									
	D	5	5	Ö	5	Ð									
Column	A	5	5	0	S	0									
9	В	5	5	0	5	0									
	C	S	5	Ð		Ð									
	D	5	5	0	5	0									
	Α														
	В														
	C														
	D														

KEY TO OBSERVATIONS:

N = Normal behavior

L = Lethargic behavior

P = Pigmentation change

Test start: 1415 \$3 11
Test termination: 1915 5/5/11
Reviewed by:

												N	lumb	er o	f Co	ntai	ners	/Pre	serv	ative					\Box	COC		of .	Ì		
Chain of 6 4700 West 77th Minneapolis, M (952) 832-2600	a Street	803					I* (3)	£3			Water					;	feOH)*I	grams		unpres.) *2	unpres.)		s	Project Ma					
Project Number 2,3/6,2,-, i Project Name FERM EABLE PEACTINE	,0,2,	1,,,0					nics (Pre	Orga	Wet Metals (HNO.)	General (Unpreserved)	Cyanide (NaOH)	(H ₂ SO ₄) *4	Oil and Grease (H ₂ SO ₄) Sulfide (Zn Acetate)		(Na ₂ S ₂ O ₃)	(1)			RTEX (2-oz tared MeOH)*I	DRO (2-oz tared) - 25 gr	2-oz unpreserv	(2 or 4-oz unp)	Moisture (prastic viar,		. Of Containers	Project Co	oy:	CD	CDA	TOXICIT	
Sample Identification	Collec		Water M	atrix	Grab	29 ype duo	Volatile (Semivolatile Orga	Dissolved	General	Cyanide (Nutrients	Oil and Sulfide	Methane	Bacteria	DKO (HCI)		0	GRO BTEX (2-0z t	DRO (2-	Metals (2		% MOISTON		Total No.	Laboratory	y: <u> </u>				7
1. RAW STORM WATER	04/22/11	12:00	X		И					1															1	TEST F C: DUBI	FOR A,	ACU- SINGLE	(5)	ICENTRIAT	[0/
2. COLUMN 1	04/28/11	12:00	Ø		р					١															1						
3. COLUMN 2	04/28/11	12:00	ß		þ					1			1												1						
4. Column 3	04 28/N	(2:00	V		v					ĵ															1						
s. column à	04/20/14	12500	Ø		b					1															1						
6. COLUMN 5	04/28/11	12500	Ø		Ø					1										_					1			1			
7. COLUMN (q	04/28/11	12100	B		þ					[.												1			1			
8.																											· · · - ·	· <u>-</u>		**	
9.													:																		. 07/01/0
10.													1																		RLG Rev
11.																															dy Form
12.													!								7		1			,		-			H:RLG\STDFORMS\Chain Of Custody
Common Parameter/Contain *I - Volatile Organics = BTEX, GF		<u>-</u> -	Reli	nquis	hed	Ву:	<u>.</u> ك	14			-			0 <i>5</i>	Pate 52	11	T 14:	ime VV	-	Rebe					K	and		5 Pate	1:	Time 5	MS/Chair
*2 - Semivolatile Organics = PAHs, Herbicide/Pesticide/PCBs	tile Organics = PAHs, PCP, Dioxins, Full List, Relinquished By: Pesticide PCBs									\perp	n I Y	N		Date		T	lime		Rece			nber:		1			Date		Time	STDFOR	
*3 - General = pH, Chloride, Flour TDS, TS, Sulfate *4 - Nutrients = COD, TOC, Pheno		·				[☐ Oti	cr																				· · · · · · · · · · · · · · · · · · ·			H:RI G\S
Nitrogen, TKN	vio, Arrimonia		Distri	ibutio	n: W	/hite-	-Origi	nal .	Acco	ompa	nies	Sh	ipme	nt to) La	b; Y	ellow	/ - F	ield	Сор	y;]	Pink	- La	b C	oor	dinator					

Toxicity test results conducted with treated water from the July 7, 2011 column tests with polyvinyl alcohol, test number 6.

TOXICITY TEST RESULTS

PERMEABLE REACTIVE SPENT LIME BARRIER

Report Date: July 20, 2011

Project No. 11-183

Prepared for:

Barr Engineering 4700 W. 77th Street Minneapolis, MN 55435

PROJECT: CHRONIC TOXICITY TESTING

PERMEABLE REACTIVE SPENT LIME BARRIER

PROJECT NUMBER: 11-183

TOXICITY TEST RESULTS

INTRODUCTION:

This report presents the results of toxicity testing on water samples received by Environmental Toxicity Control (ETC) on July 8, 2011. The samples were water samples from the Permeable Reactive Spent Lime Project. Mr. Keith Pilgrim of Barr Engineering requested that we conduct chronic toxicity tests on the samples. The scope of our services was limited to conducting 7-day static renewal chronic toxicity tests using the invertebrate, *Ceriodaphnia dubia*, in the laboratory.

TEST METHODS:

Tests were conducted in accordance with the procedures outlined in <u>Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms</u>, Fourth Edition, EPA-821-R-02-013.

Testing was started on 7/08/11.

RESULTS:

Toxicity test results are summarized in Table 1 and test conditions are summarized in Table 2.

QUALITY ASSURANCE AND QUALITY CONTROL:

Satisfactory laboratory performance on an ongoing basis is demonstrated by conducting at least one acceptable toxicity test per month with a reference toxicant. Control charts for a reference toxicant and successive endpoints (LC50 and IC25) are plotted to determine if results are within prescribed limits. Results from our most recent reference tests are shown in the following table:

Reference Toxicity Test		
Species	IC_{25}	Test Date
Ceriodaphnia dubia	0.664 g/L NaCl	7/05/11

Our results are within range of EPA expected results for the type of tests conducted.

Test methods and procedures are documented in ETC's Standard Operating Procedures (SOPs). Test and analysis protocols are reviewed by ETC's Quality Assurance/Quality Control Officer. Procedures are documented and followed as written. Any deviation from a QA/QC procedure is documented and kept in the project file. During this project, no deviation in method was warranted.

ENVIRONMENTAL TOXICITY CONTROL

Walter Koenst Bioassay Manager

Table 1. Survival of Ceriodaphnia dubia

Sample ID	48 Hour Survival (%)	7 day Survival (%)	Mean # Young Produced
Reconstituted Water	100	100	14.8
Raw Pond Water	100	100	21.6
C 1	100	30	0.1
C 2	100	90	4.4
C 3	100	90	7.2
C 4	100	100	13.1
C 5	100	100	13.0
C 6	100	100	12.9

Table 2. Summary of Chemical and Physical Data of Toxicity Tests

Test: Effluen	t w/o CO ₂					
Sample ID	${f H}q$	Dissolved Oxygen (mg/L)	°C	Total Hardness (mg/L)	Total Alkalinity (mg/L)	Conductivity (µmhos/cm)
Recon H ₂ O	8.01 - 8.37	7.5 - 8.3	25	80	60	286
Raw Pond	7.34 - 8.32	7.4 - 9.1	25	172	124	1210
C 1	7.96 - 8.45	4.7 - 8.0	25	1332	440	2750
C 2	8.01 - 8.48	4.0 - 10.0	25	1112	408	2400
C 3	7.70 - 8.43	4.0 - 8.8	25	1008	416	2400
C 4	8.08 - 8.34	5.2 - 8.8	25	804	296	2190
C 5	7.96 - 8.27	4.3 - 10.1	25	600	256	1822
C 6	7.86 - 8.30	4.1 - 8.8	25	496	236	1670

Client: Barr	Engine	cerina_		Project No.:	11-183	
Test Dates/Time ●			78	11 Termination	: 1430 7	12/11

	Replicate											
Concentration	Day	1	2	3	4	5	6	7	8	9	10	Remarks
Raw	\											
rond	2_											
	3	0	0	0	\mathcal{Z}	0	0	0	0	0	2	
	4	4	2	0	0	Ò	0	0	0	4	Ö	
	5	0	જ	જ	B	9	4	φ	4	4	6	
	Y	7	0	0	9	12	4	14	7	0	8	
	7	13	5	φ	0	10		20	10	14	9	
	Total	24	15	14	14	38	14	40	27_	24	16	$\overline{X} = 21.6$
	,			-								
C\	(
	2									-		
	3_	0]	0	ರಿ	0	0	0	0	0	0	
	4	0	0	0	Ö	0	0	Ö	0	0	0	
	5	0	0	X	0	Ó	0	. 0	Х	0	X	
	Y	0	0		X	X	X	0		0		
		0	0	-				X		0		53 1
	701	0		0	0	0	0	0	0	0	O	X=0.1
0.7	1											
_ C2	2											
	3	0	0	0	0	0	0	0	0	0	0	
	Y	0	Ĭ	T	0	0	1	0	0	Ĭ	Ö	
	5	0	4		0	0	2	0	1	0	0	
	9	0	0	O	2	X	0	0	3	3	3	
		1	1	0	8		0	2	10	0	0	
	Da		6		10		3_	2	14	4	3	X= 4.4
				<u> </u>		<u>L</u>		<u>L</u>			<u> </u>	

√ = Alive

= No. of Live Young 0 = No Young(-#) = No. of Dead Young

X = Dead

M= Missing

Client: BARR	Enainel	ring_	Projec		11-183	3
Test Dates/Time ●	Initiation:	1415	8 11	Termination:	1430	7(15/11

									 			
						Repl	icate					
Concentration	Day	1	2	3	4	5	6	7	8	9	10	Remarks
<u>C3</u>	١					//						
	2					· •						
	3	0	G	0	0	0	0	ව	O	0	\mathcal{C}^{2}	
	4	Ö	2	0	0	2	0	0	0	0	0	
	5	2	ر ک	1	2	9	2	0	3	2	1	
	9	5	0	0	4	0	0	2	0	<u> </u>	2	
		9	2	3	4		0		0		Ч	
	da)	13	7	4	10	15	2	9	3	2	7	$\overline{x} = 7.2$
			-									
C4	1	_										
	2	<u></u>								/	~	
	3	0	ပ	ပ	0	0	0	0	0	0	0	
	4	0	2	0	-1_	0	0	0	1	0	0	
	5	4	2	3	1	3	4	4	2	3	4	
	9	17	0	5	0	2	٦	4	4	4	Q	
	17	10	0	9	10	9		8	0	1	ව	
	stal	31	4	14	8	11_	18	16	7	14	18	X= 13.1
- <u>-</u>							ļ					
<u>c5</u>	1	\ <u> </u>										
	2		_								_	<u> </u>
	3	0	2	0	0	0	0	0	0		2	
	7	4	0	0	0	2	0	0	2	0	2	
	5	0	5	4	4	0	le	3		14	2	
	φ	4	4	5	5	0	14	5	<u>, 0</u>	<u> </u>	0	
	1,7	4	0	4	19	5	8	8	4	V	4	-
	-gral	14	11	15	18	7	12	16	7	16	3	X=13,0
<u> </u>	<u> </u>			<u> </u>		<u></u>			<u> </u>	<u> </u>	1	

√ = Alive

= No. of Live Young 0 = No Young(-#) = No. of Dead Young

X = Dead

M≕ Mis**t**ing

Client: Barr Engineering Project No.: 11-183
Test Dates/Time • Initiation: 1415 7811 Termination: 1430 71511

			-u·			Repl	icate			• • • • • • • • • • • • • • • • • • • •		
Concentration	Day	1	2	3	4	5	6	7	8	9	10	Remarks
CG	1										- <u>_</u>	
	2			\								
	3	0	0	٥	0	0	0	9	9	0	0	
	4	2	Ó	2		0	0	Ö	2	1	0	
	5	2	4	7	0	2	3	5	3	0	4	
	Y	0	9		1	4	4	5	0	9	9	
	7	5	10	0	0	, P	8	8	6	9	9	
T	obal.	9	20	13	2	L	15	18	11	16	19	X = 13.9
-	1											
Recon	1											
	2			2			2		3	5	1	
	4	2	0 7	0	0	07	2	0	>	2	,	
	5	0	0	*5	4	2	5	4	9	8	7	
	4	0	9	4	8	0	Ó	6	8	8	6	
	-	2	10	Ô	9	3	8	0	0	(ì	
T	lota	4	20	13	21	9	15	12	רו	22	15	X=14.8
			~~~			1			<del></del>			-
						ļ			· · · · · · · · · · · · · · · · · · ·	· 		
											ļ	
		-										
	-								<u> </u>			
						-						
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	L	<u> </u>	I	j	1

 $\checkmark = Alive$ 

#=No. of Live Young 0=No Young (-#) = No. of Dead Young

X = Dead

Analyst: 1

Reviewed By:

Client: Barr Engin-Lering Project Number: 11-183

Test Type: Chronic Species: Ceriodaphnia dulaia

	·	,				<del></del>	· · · · · · · · · · · · · · · · · · ·		
			,		Sample I	D			Remarks
Day/Date/Analyst	Parameter	Raw	C1	C2	C3	C4	C5	C6	
		Pond							
Day:	pH'	7.34	8.45	8.46	8.43	8.34	8.05	7.86	
	Dissolved Oxygen (mg/l)	9-1	7.3	10-0	8.8	8-8	1.01	8.8	
Date:	Temperature (°C)	25.0	25.0	25.0	25.0	25.0	25.0	25.0	
7/8/11	Conductivity (µmhos)	1210	2750	2400	2400	2190	1822	1670	
Analyst:	Total Alkalinity (mg/l)	124	440	408	416	296	256	23Ψ	
XM	Total Hardness (mg/l)	172	1332	1112	1008	804	600	496	
	Total Ammonia (mg/l)								· ···
Day:	Hq	8.29	8.03	8.08	8.09	8.21	8.20	8.29	
old	Dissolved Oxygen (mg/l)	8-0	6.2	7-0	6.3	4.3	5.8	6.3	
Date:	Temperature (°C)	25.5	25.5		25.5	25.5	25.5	25.5	
7/9/11	Conductivity (µmhos)				-, -				
Analyst:	Total Alkalinity (mg/l)								
KM	Total Hardness (mg/l)							-	
Day:	pH	7.49	8.43	8.48	8.41	8.32	8.11	7.95	
New	Dissolved Oxygen (mg/l)	9.0	7.5	Q.5	8.5	8.7	8.7	8.6	-
Date:	Temperature (°C)		25.0	25.0		25,0	25.0	25.0	
7/9/11	Conductivity (µmhos)								
Analyst:	Total Alkalinity (mg/l)								
Analyst. Km	Total Hardness (mg/l)								
Day: 7	pН	8.32	8.07	8.12	8.16	8.23	8.26	8.28	
oid	Dissolved Oxygen (mg/l)	7.9	5.5	6.3	6-1	6.5	5.8	5.8	
Date:	Temperature (°C)	25,4	<del>  ~</del>	25.4	25.4	25.4	25.4	25.4	
7/10/11	Conductivity (µmhos)								
Analyst:	Total Alkalinity (mg/l)								
Analyst. Km	Total Hardness (mg/l)								
Day: 2	рH	7.60	8.21	8.35	8.29	8.24	8.05	7.96	
New	Dissolved Oxygen (mg/l)	8.7	7.6	7.9	8-0	8.3	8.4	8.3	
Date:	Temperature (°C)	25.0	25.0	25.0	25.0	25.0	25.0		
7/10/11	Conductivity (µmhos)								
Analyst: KM	Total Alkalinity (mg/l)								
MYX	Total Hardness (mg/l)								
	1111						7	1	

Client: Barr Engineering	Project Number: 11-163
Test Type: Chronic	Species: C. dubia

70 /00 / / / 1			Remarks						
Day/Date/Analyst	Parameter	Raw Pond	C1	C2	C3	C4	C5	C6	
Day: <b>3</b>	рН	8.20	7.96	8,0,5	808	8.14	8,27	8.30	
0LD	Dissolved Oxygen (mg/l)	8,2	5.2	5.6	5.5	6,7	4.3	4.1	
Date:	Temperature (°C)	25.4	25.4	25.4	25.4	25.4	25,4	25.4	
7/11/11	Conductivity (µmhos)								
Analyst:	Total Alkalinity (mg/l)								
W	Total Hardness (mg/l)								
	Total Ammonia (mg/l)				_		-		<del></del>
Day: 3	pH	7.96	8.12	8.22	8.18	818	8.09	8.04	
A 10	Dissolved Oxygen (mg/l)	8.6	73	7.23	7.5	7.8	7.9	7.9	
Date:	Temperature (°C)	25.0	25,0	75.0	25.0				
7/11/11	Conductivity (µmhos)	43.0	2.0	73.0	40.0	25.0	75.6	35.0	
Analyst:	Total Alkalinity (mg/l)	<del> </del>							
I.)	Total Hardness (mg/l)						_	-	
D !		0.00	001	0.12	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- 10			
Day:	pH	8.29	8.01	8.12	8.07	8.15	8.14	8.16	
old	Dissolved Oxygen (mg/l)	7.5	5.3	5.3	4.9	5.4	5.2	5.5	
Date:	Temperature (°C)	253	25.3	25.3	25.3	25.3	25.3	25.3	
7/12/11	Conductivity (µmhos)			<u> </u>					
Analyst: Km	Total Alkalinity (mg/l)								<u>_</u>
· · · · · · · · · · · · · · · · · · ·	Total Hardness (mg/l)					-	<u> </u>		
Day:     United States	pH	771	8.12	8.24	8.16	8-16	8.02	7.92	
New	Dissolved Oxygen (mg/l)	9.1	8-0	81.1	8-1	8.4	8.4	8.4	
Date:	Temperature (°C)	25.0	25.0	25.0	25.0	25.0	52.0	25.0	
7/12/11	Conductivity (µmhos)								
Analyst:	Total Alkalinity (mg/l)								
F-70 /	Total Hardness (mg/l)				8.03				
Day: 5	pH	8.22	8.00	Q.05	7469	8.11	8.10	8.15	
019	Dissolved Oxygen (mg/l)	7.8	5.2	5.1	4.0	6.2	5.1	5.3	
Date:	Temperature (°C)	25.5	25.5	25.5	25.5	25.5	25:5	25,5	
7/13/11	Conductivity (µmhos)								
Analyst: KM	Total Alkalinity (mg/l)								
	Total Hadness (mg/l)					-			
eviewed by:	114	X				· · · · ·	7/2	0/11	

Bio.102

Client: BARR Engineering	Project Number: 11-183
Test Type: CNRONIC	Species: C. dubia

				· · · · · · · · · · · · · · · · · · ·	Sample I	D .:.	<del></del>		Remarks
Day/Date/Analyst	Parameter	Raw	C1	C2	C3	C4	C5	C6	ixemai ks
		Pond			ļ	L	<u></u>		
Day: 15	pН	7.45	8.14	8.08	8.15	8.13	7.98	7.94	
NéW	Dissolved Oxygen (mg/l)	8.7	7.8	8-1	8.2	8-3	8-3	8.3	
Date:	Temperature (°C)	25.0	25.0	25.0	25.0	25.0	25-0	25.0	,="
7/13/11	Conductivity (µmhos)								
Analyst:	Total Alkalinity (mg/l)								
KM	Total Hardness (mg/l)								
	Total Ammonia (mg/l)								
Day: (0	pH	8.23	905	8-06	7.95	8.13	8.10	8.13	
old	Dissolved Oxygen (mg/l)	7.7	5.8	5.2	5.5		5-1	5.4	
Date:	Temperature (°C)	25.2	25.2	25.2	25:2		25.2	25.2	
7/14/11	Conductivity (µmhos)			02.					, <u> </u>
A a leasts	Total Alkalinity (mg/l)								
Analyst: YM	Total Hardness (mg/l)								
Day: (0	pH	7.68	8.07	8.04	8.13	8.10	7.96	7.92	
New	Dissolved Oxygen (mg/l)	9-0	8-1	8.4	8.5		8.8		
Date:	Temperature (°C)					25.0		25.0	
7/14/11	Conductivity (µmhos)	_							
Analyet.	Total Alkalinity (mg/l)								
Ymaryst. Km	Total Hardness (mg/l)								
Day:	рН	8.20	7.96	8.01	770	8.08	8-11	8.13	
Final	Dissolved Oxygen (mg/l)	7.4	47	4.0	4-6		4.9	4.6	
Date:	Temperature (°C)	25.5	255		25.5	25.5	25.5	25.5	
7/15/11	Conductivity (µmhos)		0,70	<i>-</i>		<u> </u>	0,,5	0,15	
Analyst:	Total Alkalinity (mg/l)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
1 KM	Total Hardness (mg/l)						<del>                                     </del>		
Day:	pH								
	Dissolved Oxygen (mg/l)								
Date:	Temperature (°C)								
/ /	Conductivity (µmhos)						<del> </del>		
Analyst:	Total Alkalinity (mg/l)								
marys.	Total Alkaminty (mg/l)								
	1111	X	<u> </u>	L			1	1	

Bio.102

Client: BARR Engineering	Project Number:     -   3
Test Type: CARONIC	Species: Ceriodaphnia dubior

			Concentration	Remarks
Day/Date/Analyst	Parameter	Recon		]
Day:	pH	8.01		
Ó	Dissolved Oxygen (mg/l)	8.0		
Date:	Temperature (°C)	25.0		
7/8/11	Conductivity (µmhos)	286		
Analyst:	Total Alkalinity (mg/l)	60		
KM	Total Hardness (mg/l)	80		
	Total Ammonia (mg/l)			
Day:	pH	8.25		
oid	Dissolved Oxygen (mg/l)	9.3		
Date:	Temperature (°C)	25.5		
7/9/11	Conductivity (µmhos)			
Analyst:	Total Alkalinity (mg/l)			
YM	Total Hardness (mg/l)			<del>-</del>
Day: \	pH	8.37		
New	Dissolved Oxygen (mg/l)	8.3		
Date:	Temperature (°C)	25.0		
7/9/11	Conductivity (µmhos)			
Analyst: $\checkmark$	Total Alkalinity (mg/l)			
F-VV /	Total Hardness (mg/l)			-
Day: 2	pН	8.22		
oid	Dissolved Oxygen (mg/l)	8-0		
Date:	Temperature (°C)	25.4		
7/10/11	Conductivity (µmhos)			
Analyst:	Total Alkalinity (mg/l)			
*-٧٧\	Total Hardness (mg/l)			
Day: 2	рН	8.22		
New	Dissolved Oxygen (mg/l)	8.2		
Date:	Temperature (°C)	25.0		
11/01/1	Conductivity (µmhos)			
Analyst:	Total Alkalinity (mg/l)			
k-W/	Total Handness (mg/l)			

Reviewed by:

Date: 7/20/1

Bio.102(2)

Client: Barr Engineering	Project Number: 11-193
Test Type: Chronic	Species: C. dubia

				Concer	tration	 	Remarks
Day/Date/Analyst	Parameter	Recon					]
Day: 3	рH	8,19					
000	Dissolved Oxygen (mg/l)	8.19					
Date:	Temperature (°C)	25,4					
7/11/11	Conductivity (µmhos)						
Analyst:	Total Alkalinity (mg/l)						
WK.	Total Hardness (mg/l)						
<b>3 - /</b> ·	Total Ammonia (mg/l)						
Day: 3	pН	8.23					
New	Dissolved Oxygen (mg/l)	8.23					
Date:	Temperature (°C)	25.0					
7/11/11	Conductivity (µmhos)						
Analyst:	Total Alkalinity (mg/l)						
WK	Total Hardness (mg/l)						
Day:	pН	8.13					
Day.	Dissolved Oxygen (mg/l)	7.4	,				
Date:	Temperature (°C)	25.3			_		
7/12/11	Conductivity (µmhos)						
Analyst:	Total Alkalinity (mg/l)						
***	Total Hardness (mg/l)						
Day: U	рН	8.19					
Néw	Dissolved Oxygen (mg/l)	7.9					
Date:	Temperature (°C)	25.0					
7/12/11	Conductivity (µmhos)						
Analyst:	Total Alkalinity (mg/l)						
YM YM	Total Hardness (mg/l)						
Day: 5	рН	8-05					
oid	Dissolved Oxygen (mg/l)	$\neg$					
Date:	Temperature (°C)	25.5					
7/13/11	Conductivity (µmhos)						
Analyst: KM	Total Alkalinity (mg/l)						
CV.	Total Hardness (mg/l)					]	

Reviewed by:

Date: 7/30[[

Bio.102(2)

Client: Barr Engineering	Project Number: 11-183
Test Type: OWRONIC	Species: C-dubia

			 Remarks	
Day/Date/Analyst	Parameter ·	Recon		
Day: 5	pН	8.14		<del>-</del>
New	Dissolved Oxygen (mg/l)	8.0		
Date:	Temperature (°C)	25.0		
7/13/11	Conductivity (µmhos)			
Analyst:	Total Alkalinity (mg/l)			
KM	Total Hardness (mg/l)			
	Total Ammonia (mg/l)			
Day: 🗸	pН	8.08		
oid	Dissolved Oxygen (mg/l)	7.6		
Date:	Temperature (°C)	25.2		
7/14/11	Conductivity (µmhos)			
Analyst:	Total Alkalinity (mg/l)			
/ <del>//</del> /	Total Hardness (mg/l)			
Day: 🕠	pН	8-18		<del></del>
New	Dissolved Oxygen (mg/l)	8-1		
Date:	Temperature (°C)	25'0		
7/14/11	Conductivity (µmhos)			
Analyst: Km	Total Alkalinity (mg/l)			
	Total Hardness (mg/l)			
Day:	pН	8-11		
Final	Dissolved Oxygen (mg/l)	7.5		
Date:	Temperature (°C)	25.5		<del></del> -
7/15/11	Conductivity (µmhos)			
Analyst:	Total Alkalinity (mg/l)			
K-17 (	Total Hardness (mg/l)			
Day:	рН			
	Dissolved Oxygen (mg/l)			
Date:	Temperature (°C)			
/ /	Conductivity (µmhos)			
Analyst:	Total Alkalinity (mg/l)			
	Total Hardness (mg/l)			

Reviewed by: South

Date: 7 30 ()

101snil	C0010		Vumbi	7		əiA -	wolls	ab; Yo		Sam					19	ЧιΟ		V bodg					3 - General = pH, Chloride, Flourid TDS, TS, Sulfate 4 - Nutrients = COD, TOC, Phenol
Date Time	7V.		:Аq	bəvi	Кесе		.01		Date		Ice? N	пО		_			;À;	g pau	siupi	Relin	isi Full List,	Volatile Organics = BTEX, GRO, TPH, Full List. Semivolatile Organics = PAHs, PCP, Dioxins, Full List, Herbicide/Pesticide/PCBs	
Dsta Time	/		00	penie	Bec	əu	TO!	1.	Date		Ice?		<u></u>		A	00	; (q	pəq E	lsiupi	Relin	ion Key	r - Preservat	Common Parameter/Container
											П							П		П			
	+	+		H	+	+	+	+	+	+	H	+	+	Н	+	$\forall$	+	+	+	Н			2.
																					1 N		ı.
			9.																				
	H	+	$\vdash$	H	-	+	H	+	+	+		+	+	Н	+	$\dashv$	+	+	+	Н			.0
				П		Ш							4					П					.6
								$\top$										$\sqcap$		П			
		+		$\square$		+	$\perp$		4	+	Н	Н	+	Н	+		4	$\sqcup$	+	Н			.8
<b>^</b>	5					- 1							3					X		×	1	1	1177-32
	2	T	H	†		$\top$	††		1	1			7		+	H	1	J		X			1111-57
	-		Ш	Ш									-			Ц		X		^			IILL-50
	5												3					X		X			11LL-+D
-	,	+	H	+		+	+	+	+	+		H	3	H	+	Н		1	+				
)	6												C					^		Х			11LL-87 "
	3			П									Č					X		х	(	/	3. C2-7711
		+	H	Н	+	+	+	+	+	+	Н	+	10	Н	+	H	+	1.1	+	ľ			
	2												8					X		χ	/	)	1117-19 2
CHRONIC TOXICITY TEST.	2						П						C					X		x	00:51	11/4/	OZy anal myy
SINGLE CONCENTRATION		+	10 0		- 0	-	+	-	m :	2 (0		7/			- 10		00		0	Н	Jime	Date	I RAW FOND HED
Kemarks:	Total		% Moisture	Metals	GRO, BTEX DRO (2-oz	VOCs		DRO	Bacteria	Sulfide (Z	Oil and G	Vutr	General (Unpres	otal	emi	/olai	QC	irab	Soil	Water			Sample Identification
Laboratory: Toxicity Control	Z _o		oistu	ls (	BT			(HC	eria	de (	but	ent	ral	Z	vola	ile	əd		XiTix	M	ction		
Sampled by: COA	. Of				ex (	(2-oz		3		=	2	S (H	(C)	tals	M Eie	Org	33	67	7	ō	N 7317	e BARCA	PERMEABLE REACTIV
Sampled by:			(plastic	un I	2-oz	tared			252	Ace	rease	1280	Pres	Œ	Org	anic		-	-	-	1 11		Project Name
Project Contact:	onta		-	pres	tare				(Na 2S2O3)	Acetate)	(H ₂	Nutrients (H2SO4) *4	Serve	Total Metals (HNO3)	ganic	s (F					-	5.0,	Project Number
Project Contact:	Containers		vial, 1	unpreserved)	25	1eO					(H2SO4	4	Inpreserved) *3	٦	Semivolatile Organics *2  Dissolved Metals (HNO ₃ )	Volatile Organics (Pres.) *1							0007-709 (706)
Project Manager: COA KMP	s		vial, unpres.)	(b)	(2-oz tared MeOH)*I tared) - 25 grams	MeOH) *I					٥		3	37	2)	I* (					803	Street 195435-4	4700 West 77th Minneapolis, M (952) 832-2600
		_	lic			$\pm$					Wat	_		ш							-	Spoisn	Chain of
1 10 1 303				9	rivativ	Prese	ners/	ontai	O lo	per	unN											3 3 4	

Toxicity test results conducted with treated water from the September 13, 2011 column tests with spent lime only. Test number 7.

## TOXICITY TEST RESULTS

## PERMEABLE REACTIVE SPENT LIME BARRIER

Report Date: September 23, 2011

Project No. 11-263

Prepared for:

Barr Engineering 4700 W. 77th Street Minneapolis, MN 55435





PROJECT: CHRONIC TOXICITY TESTING

PERMEABLE REACTIVE SPENT LIME BARRIER

**PROJECT NUMBER: 11-263** 

#### TOXICITY TEST RESULTS

### **INTRODUCTION:**

This report presents the results of toxicity testing on water samples received by Environmental Toxicity Control (ETC) on September 14, 2011. The samples were water samples from the Permeable Reactive Spent Lime Project. Mr. Keith Pilgrim of Barr Engineering requested that we conduct chronic toxicity tests on the samples. The scope of our services was limited to conducting 7-day static renewal chronic toxicity tests using the invertebrate, *Ceriodaphnia dubia*, in the laboratory.

#### **TEST METHODS:**

Tests were conducted in accordance with the procedures outlined in <u>Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms</u>, Fourth Edition, EPA-821-R-02-013.

Testing was started on 9/14/11.

#### RESULTS:

Toxicity test results are summarized in Table 1 and test conditions are summarized in Table 2.

#### **QUALITY ASSURANCE AND QUALITY CONTROL:**

Satisfactory laboratory performance on an ongoing basis is demonstrated by conducting at least one acceptable toxicity test per month with a reference toxicant. Control charts for a reference toxicant and successive endpoints (LC50 and IC25) are plotted to determine if results are within prescribed limits. Results from our most recent reference tests are shown in the following table:

Reference Toxicity Test		
Species	$IC_{25}$	Test Date
Ceriodaphnia dubia	0.761 g/L NaCl	9/12/11

Our results are within range of EPA expected results for the type of tests conducted.

Test methods and procedures are documented in ETC's Standard Operating Procedures (SOPs). Test and analysis protocols are reviewed by ETC's Quality Assurance/Quality Control Officer. Procedures are documented and followed as written. Any deviation from a QA/QC procedure is documented and kept in the project file. During this project, no deviation in method was warranted.

ENVIRONMENTAL TOXICITY CONTROL

Walter Koenst Bioassay Manager

Table 1. Survival of Ceriodaphnia dubia

Sample ID	48 Hour Survival (%)	7 day Survival (%)	Mean # Young Produced
Reconstituted Water	100	100	17.0
Raw Pond Water	100	80	17.6
C 1	0	0	0.0
C 2	80	40	2.2
C 3	100	100	8.1
C 4	90	90	6.6
C 5	100	100	16.2
C 6	100	100	17.6

Table 2. Summary of Chemical and Physical Data of Toxicity Tests

Sample ID	Яq	Dissolved Oxygen (mg/L)	°C	Total Hardness (mg/L)	Total Alkalinity (mg/L)	Conductivity (µmhos/cm)
Recon H ₂ O	7.76 - 8.10	7.6 - 8.4	25	88	60	315
Raw Pond	7.18 - 8.04	7.6 - 10.7	25	88	80	747
C 1	8.90 - 9.28	7.7 - 9.0	25	560	400	1247
C 2	8.63 - 9.26	7.5 - 9.4	25	496	320	1210
C 3	8.52 - 9.29	7.4 - 10.3	25	372	248	1080
C 4	8.53 - 9.26	7.3 - 10.3	25	388	240	1081
C 5	8.42 - 9.22	7.4 - 10.7	25	300	192	1001
C 6	8.17 - 8.99	7.5 - 10.9	25	200	220	892

Client: BARR ENGINEERING Project No.: 11-263
Test Dates/Time Initiation: 14045 9/14/11 Termination: 1115 9 20/11

Replicate												
Concentration	Day	1	2	3	4	5	6	7	8	9	10	Remarks
Recon	1		\									
	2		)				•			<u></u>	<u></u>	
	3	3	4	4	4	4	4	4	4	3	4	
		0	Q	Ó	0	0	0	Ó	0	0_	0	_
	5	6	6	3	5	4	4	6	7	5	6	
	4	વ	9	1	જ	9	8	10	12	9	4	
	1)			2	17	1~7	16	٦ [,] _	7 7	17	16	H ./.
1	beto	17	19	8	1/	17	16	べっ	43	17	10	X = 17.0
Raw	1				ب							
Pond	2								_		-	
	3	4	7	J	4	3	Ч	4	4	3	Ч	
	Ч	3	0	Γ	4	0	0	0	9	9	9	
	5	19	5	0	0	3	0	4	Ö	0	0	
	φ	10	11	fO	34	9	ペ	14	ŢŢ	10	12	
									J. **			
	Total	31	₹0	<u>٦</u> 1	11	15	4	22	71	19	72	x=17.6
Cı	\	×	X	X	×	$\times$	×	×	×	~	X	
	2											
	3											
	4											
	5											
	4										<u></u>	
			-							ļ		
	1	<u> </u>	L		L				<u> </u>	<u> </u>		

√ = Alive

#=No. of Live Young (-#)=No. of Dead Young

0 = No Young

X = Dead

v = Male

M= Missi**l**ig

Analyst: WKKM SC

Reviewed By

#### CHRONIC TOXICITY TEST CERIODAPHNIA REPRODUCTION AND SURVIVAL

Client: BARR ENGINEERING Project No.: 11-263
Test Dates/Time Initiation: 1445 9 14 11 Termination: 1115 9 20 11

						Repl	icate					
Concentration	Day	1	2	3	4	5	6	7	8	9	10	Remarks
C2	١		<b>√</b> X						X		_	
	2				_							
	3	1		1	1	0	1	2			4	
	ч	0		X	0	2×	0	0		0	0	
	5	0	-		<u>O</u> .		0	Ó		0	0	
	4	4			3x		0	X		0	2	
	_ ( )										,	~ .
	Total	5	0		4	2	1	ર	0	1	(_	x = 2.2
	,											
<u> </u>	1											
	2	1	U	2	U	3	4	3	2	2	N	
	4	9	70	0	9	0	70	0	0	0	70	
	5	3	2	1	0	0	2	0	0	3	4	
	6	17	0	5	0	<del>-</del>	1	0	9	6	9	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								-		The state of the s	
_	Total	1)	6	8	4	10	7	3	8	11	13	$\bar{x} = 8.1$
	3 112					, -	_				,	
CH	1											*
	2		<i>\</i>	1/35			Y					
	3	J	4	2	3	l		4	0	0	3	
	4	5	0	0	O	0		0	0	0	0	
	5	0	0	2	0	0		2	0	4	3	
	6	V	0	Q	4	3		5	0	7		
	\ \ 1									ļ		
-	1stal	12	4	4	7_	4	0	11	0	11	13	X = 6.6
	<u> </u>	<u> </u>								l		

√ = Alive

# = No. of Live Young 0 = No Young X = Dead(-#) = No. of Dead Young

#### CHRONIC TOXICITY TEST CERIODAPHNIA REPRODUCTION AND SURVIVAL

Client: BARR ENGINEERING Project No.: 11-263
Test Dates/Time Initiation: 1645 91411 Termination: 115 9 2011

						Repl	icate					
Concentration	Day	1	2	3	4	5	6	7	8	9	10	Remarks
C5	1											
	2	~							-		·	
	3	3	3	3	3	4	4	3	3	3	4	
	4	6	9	9	6	0	0	0	0	0	4	
	5	0	0	0	0	0	4	4	4	3	۵	
	4	10	10	11	[]	0	10	10	9	1.1	3	
	Total	19	19	20	<b>マ</b> 0	4	18	17	13	17	15	x = 16,2
CU	1								/_			
	2	-			\ <u>\</u>		-				·	
	3	4	4	4.	Υ)	7	4	T	O	4	2	
	4	0	0	4	5	0	6	0	0	6	8	
	5	0	4	0	O	3	0	4	6	0	0	
	6	8	12	1	10	9	11	4	10	4	12	
	75 1	10	_	·	10	مرا	2,		10	1.1	2 2	- 17/
	Tetal	18	<u> </u>	17	18	15	٦1	12	19	14	22	x = 17.6
	ļ											
		_										
				<u>-</u>		•	<u> </u>					
	<u> </u>	L			<u> </u>		<u> </u>	<u></u>	<u> </u>	<u> </u>		

 $\checkmark$  = Alive

#= No. of Live Young 0= No Young X= Dead (-#) = No. of Dead Young

#### Toxicity Test Daily Chemistries

Client: BARR ENGINEERING	Project Number: 11 - 263
Test Type: ChroNIC	Species: Cerrodophila dubia

	2 0 1 2 1	-			Sam	ple ID		14.7		Remarks
Day/Date/Analyst	Parameter	Recon H2O	Raw Pond	C1	C2	C3	C4	C5	C6	
Day:	рН	8.03	7.18	9.28	9.26	9.29	9.26	9.22	8.99	
	Dissolved Oxygen (mg/l)	8.3	10.7		9.2		10.3		10,9	
Date:	Temperature (°C)	250	35,0	35.0	35.0	35.0	25.0	25.0	25.0	
9114111	Conductivity (µmhos)	315	747			1080		1001	892	
Analyst:	Total Alkalinity (mg/l)	60	80	400	320	248	240	192	220	
WK.	Total Hardness (mg/l)	88	88	100000000000000000000000000000000000000	496		388	300	200	
	Total Ammonia (mg/l)									
Day:	pH	7.97	8.01	8.90	8.84	8.65	8.69	859	8.43	
OLD	Dissolved Oxygen (mg/l)	8.1	7.0		7.le		-	7.9	8.0	
Date:	Temperature (°C)	25.4	25.4			25.4			25.4	
9/15/11	Conductivity (µmhos)							1-1-		
Analyst: \S	Total Alkalinity (mg/l)									
72	Total Hardness (mg/l)									
Day: (	pН	7.98	7.56	9,27	9.25	9.22	9.21	9.17	8.89	
New	Dissolved Oxygen (mg/l)	8.1		8/0		8.9		9.2	9.4	
Date:	Temperature (°C)					250		250	25.0	
9/15/11	Conductivity (µmhos)									
Analyst: \C	Total Alkalinity (mg/l)									
Analyst: JS	Total Hardness (mg/l)	1.1								
Day: 2.	pH	7.76	7.99		8.81	9102	8102	951	8.35	
old	Dissolved Oxygen (mg/l)	8.1	8.2		8.2			8.0		
Date:	Temperature (°C)	25.3				25.3				
11/01/1	Conductivity (µmhos)							-		
Analyst: V NO	Total Alkalinity (mg/l)			1 = 1						
Analyst. Km	Total Hardness (mg/l)									
Day: 2	рН	7.82	7.102		9.13	9.16	9.15	9.13	8.74	
New	Dissolved Oxygen (mg/l)	0.4	9.6		9.4		9.5		9.8	
Date:	Temperature (°C)		25.0		_				25.0	
9/14/11	Conductivity (µmhos)			1		111				
Analyst:	Total Alkalinity (mg/l)			77.						
KM	Total Hardness (mg/l)					1 = = 1				

Reviewed by

Date: 9 23 11

# Toxicity Test Daily Chemistries

Client: Barr Engineering	Project Number: \( \( \) \( \) \( \) \( \)
Test Type: CMRONIC.	Species: C-dubia

					Sam	ole ID	-	·		Remarks
Day/Date/Analyst	Parameter	Recon H2O	Raw Pond	C1	C2	СЗ	C4	C5	C6	
Day: 3	pН	7.94	8.01		863	854	8.54	8,44	817	
00	Dissolved Oxygen (mg/l)	7,8	7.9		7.5	7.7	7.8	7.9	7.7	
Date:	Temperature (°C)	25.4	25,4		25.4	25,4	75.4	25.4	25.4	
9/17/11	Conductivity (µmhos)									
Analyst:	Total Alkalinity (mg/l)							"		
W	Total Hardness (mg/l)					"				
7	Total Ammonia (mg/l)		****			9.20	,			
Day: 3	pH	8.09	7.59		9.18	6861	9.19	9.12	8.87	
New	Dissolved Oxygen (mg/l)	8.1	8.4		8.4	-	8.6			
Date:	Temperature (°C)	25.0				25,0	_		25.0	
9/17/11	Conductivity (µmhos)				7:0		05.0		- /- 0	
	Total Alkalinity (mg/l)									
Analyst: KM	Total Hardness (mg/l)									
Day: U	pН	7.78	8.04		8.75	8.65	9.66	9,55	8.39	
oid	Dissolved Oxygen (mg/l)	7.6			7.5	7.4	7.3	7.4	7.5	
Date:	Temperature (°C)	255							25.5	
9/18/11	Conductivity (µmhos)									-
Analyst:	Total Alkalinity (mg/l)	- "								
KM	Total Hardness (mg/l)	-								
Day: 🔾	pН	8.10	7.61		9.23	9.27	9.26	9.19	891	
New	Dissolved Oxygen (mg/l)	7.7	8.9		8.9		9.1	9.1	9.3	
Date:	Temperature (°C)	25.7	25,0			25.0				
9/18/11	Conductivity (µmhos)							-		
Analyst:	Total Alkalinity (mg/l)					_				-
A-44 /	Total Hardness (mg/l)									
Day: 5	pН	7.97	8.01		863	852	853	842	8.28	
old	Dissolved Oxygen (mg/l)	7.9	7.9			7.5			7.6	<u> </u>
Date:	Temperature (°C)	25.4							25.4	
9/19/11	Conductivity (µmhos)				-					
Analyst:	Total Alkalinity (mg/l)								""	
$\sim$ $\sim$ $\sim$	Total Hardness (mg/l)								1	

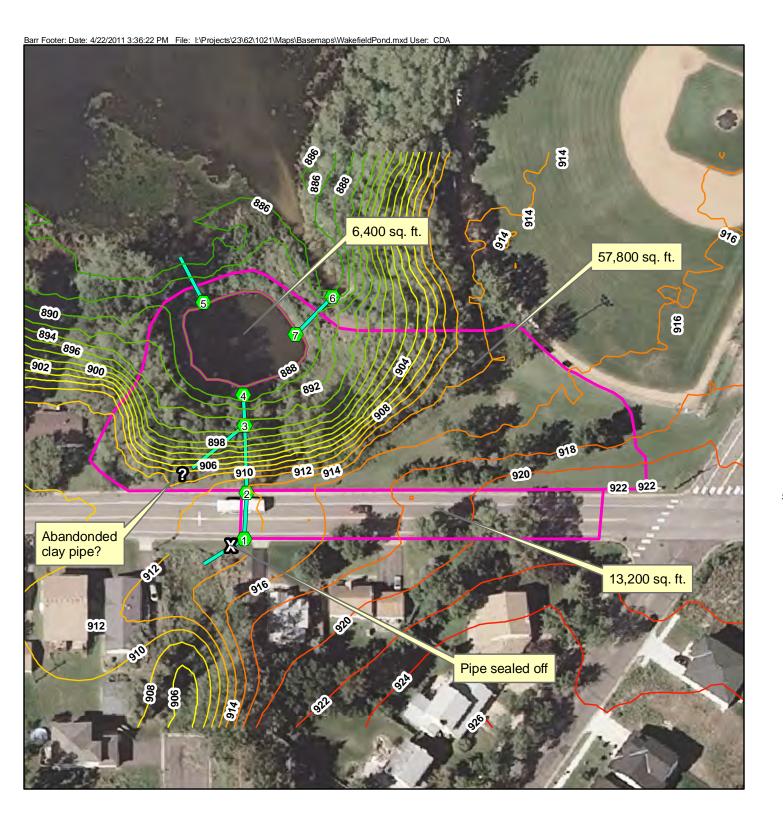
Reviewed by:

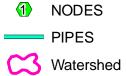
Date: 9 23 11

#### Toxicity Test Daily Chemistries

Client: Barr Engineering	Project Number: 11-263
Test Type: Chronic	Species: C. dubia

					Samı	ole ID				Remarks
Day/Date/Analyst	Parameter	Recon H2O	Raw Pond	C1	C2	СЗ	C4	C5	C6	
Day: 5	pН	7.95	7.73		9.08	9.11	9.09	9.00	8.68	
New	Dissolved Oxygen (mg/l)	7.8	8.8		8.3	8.5	8.6	8.6	8.7	
Date:	Temperature (°C)		<u> వ</u> ేక.0		25.0	25.0	25.0	250	25.0	
9/19/1)	Conductivity (µmhos)									
Analyst:	Total Alkalinity (mg/l)									
$\subseteq$	Total Hardness (mg/l)									
$\partial \mathcal{U}$	Total Ammonia (mg/l)		_							
Day: 🕠	pН	7.91	7.77		8.67	8.57	855	8.42	8.28	
Final	Dissolved Oxygen (mg/l)	1	8-0			8.0		8-0	7.8	
Date:	Temperature (°C)		25,4		25.4	25,4	25.4	25.4		
9/20/11	Conductivity (µmhos)							_		
Analyst: KM	Total Alkalinity (mg/l)									
HYI	Total Hardness (mg/l)						-			
Day:	рН									
	Dissolved Oxygen (mg/l)									
Date:	Temperature (°C)			•						
1 1	Conductivity (µmhos)									
Analyst:	Total Alkalinity (mg/l)									
	Total Hardness (mg/l)									
Day:	pН									
	Dissolved Oxygen (mg/l)									
Date:	Temperature (°C)									
/ /	Conductivity (µmhos)									
Analyst:	Total Alkalinity (mg/l)									
	Total Hardness (mg/l)									
Day:	pН									
	Dissolved Oxygen (mg/l)						_			
Date:	Temperature (°C)									
/ /	Conductivity (µmhos)									
Analyst:	Total Alkalinity (mg/l)									
-	Total Hardness (mg/l)		Ī					_		


Reviewed by:


Date: 92311

Date I Time Date Time	7	X	pà:	10	issesi				Air Freight   Federal Express   Sampler   Other   Original Accompanies Shipment to Lab; Yellow - Field										Sample	Herbicide/Pesticide/PCBs  1 General = pH, Chloride, Flouride, Alkalinity, TSS, TDS, TS, Sulfate  1 Murents = COD TOC Phenols Ammonia					
JaneT , Time		1	1/9		1	1	30:2	1	91	D9		N (				100		ed By			181	J IIII ; Full L	<ul> <li>Volatile Organics = BTEX, GRO</li> <li>Semivolatile Organics = PAHs, I</li> </ul>		
V	H	11		psy	Recei		Time	1	. Joji	pg .	i	Jce,	10		1	107	1	ed By	qsinp	Relin	ion Key	r - Preservati	ommon Parameter/Containe		
1	7													C				1		1	1	1	11516-13		
	7													7									11516-50		
	2													7									11516-43		
	2													t									11517-53		
)	2													7									11519-50		
5	5													C				5		3	)		11516 -1311		
SINGLE CONCENTRATION CHRONIC TOXICITY TEST	2													8				X		X	20:21	11/8/16	KAW POND HED		
																							KKEREL		
- Кетагкз:	Total		% M	Metals (2-	DRC	VOCs GRO.			DRO (HC	Methane	Sulfide (Z	Oil and G	Cyan	Gene	Diss	Semi	00	Grab Comp.	3011	Water	эшіТ	Date	Sample Identification		
Laboratory: Toxicity control	Zo.		Moisture	Cs (	(2	-			(H	ane	de (	and	ide	eral	Ne	vola	90	ΙζΙ	XiTi	_	noita	Collec	alame2		
Sampled by: CDA	Of				oz tar	(2-oz ta			CI)	(N) c			NaOH	General (Unpreserved) *3	Total Metals (HNO2)	Volatile Organics (Pres.) * Semivolatile Organics *2	68	665	7	ō	N SIER	NAA 3	oject Name SAMEABLE REACTIVE		
Project Contact: COA	Containers			oz unpreserved)	ed) -	tared M			Na 232 (3)		n Acetate)	rease (H ₂ SO		escrye	IN (H)	rganics			- 1	1'6	0,.,1	,2,0,	roject Number		
Project Manager: KMP			il, unpres.)	unpres ) *2	DRO (2-oz tared) - 25 grams	tared MeOH) */						304)		d) *3	NO ₃ )	es.)*I		Grab LAL			4700 West 77th Street 4803				
COC 01			Į!	ios	Svite		<u> </u>				1916	M	-				1				Chain of Custody				

## Appendix B

Design drawings and supporting design drawings





Note: See the following pages for pictures of the manholes/catchbasins

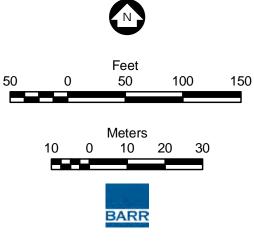


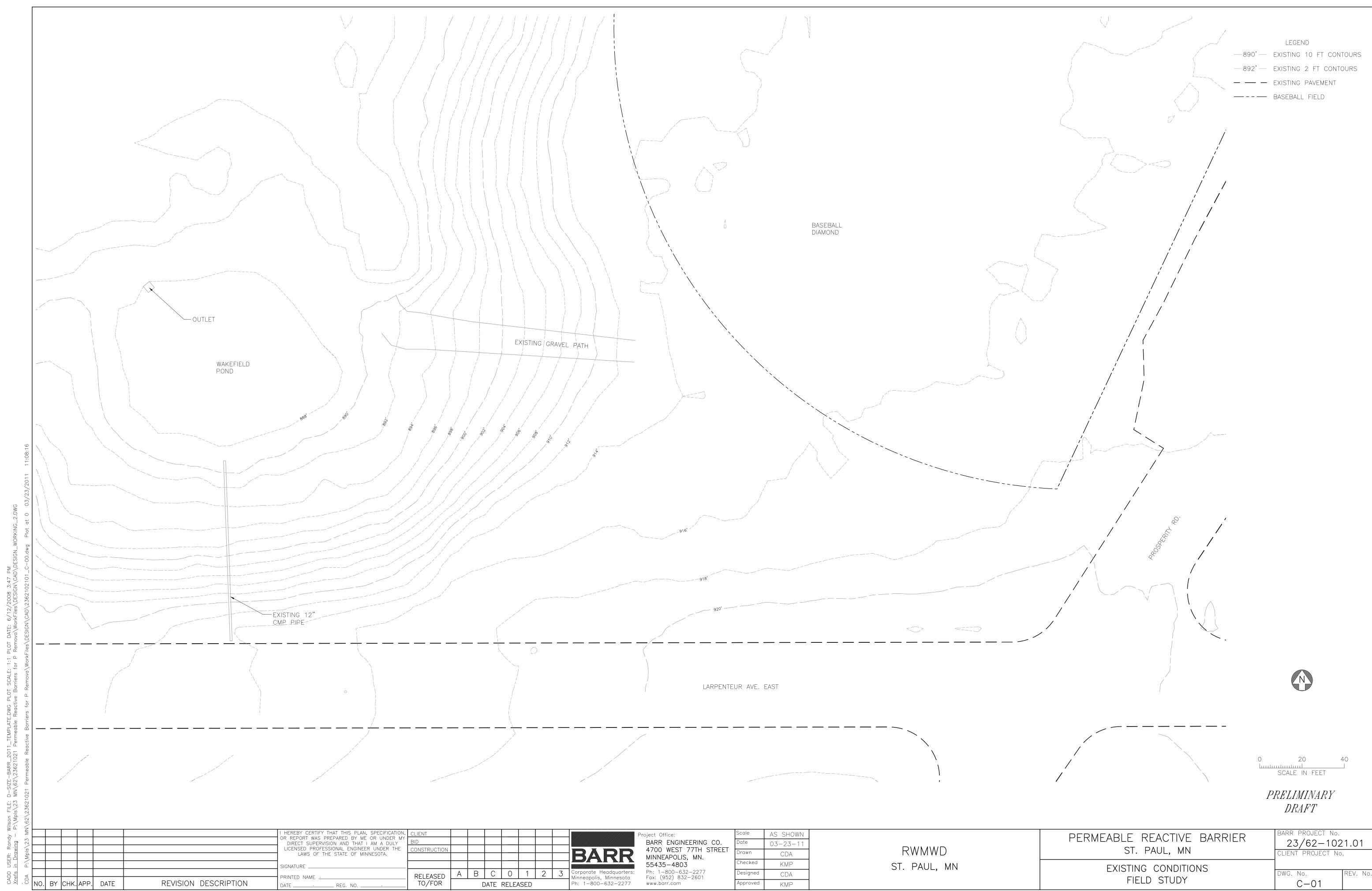

Figure 1

WAKEFIELD POND WATERSHED AND TOPO PRB DESIGN RWMWD St. Paul, MN

Node #1 of Figure 1. Catchbasin on the South side of Larpenteur Ave. Pipe to the South-West is plugged.



Node #2 of Figure 1. Catchbasin on the North side of Larpenteur Ave.




Node #3 of Figure 1. Manhole along the hill side South of Wakefield Pond.



Node #6 of Figure 1. Low Flow diversion inlets to Wakefield Pond from the East.






# RAMSEY-WASHINGTON METRO WATERSHED DISTRICT

# PERMEABLE REACTIVE BARRIER WAKEFIELD PARK

MAPLEWOOD, MINNESOTA



STATE MAP



SHEET INDEX G-GENERAL

C-CIVIL

SHEET NO.

C-01

TITLE

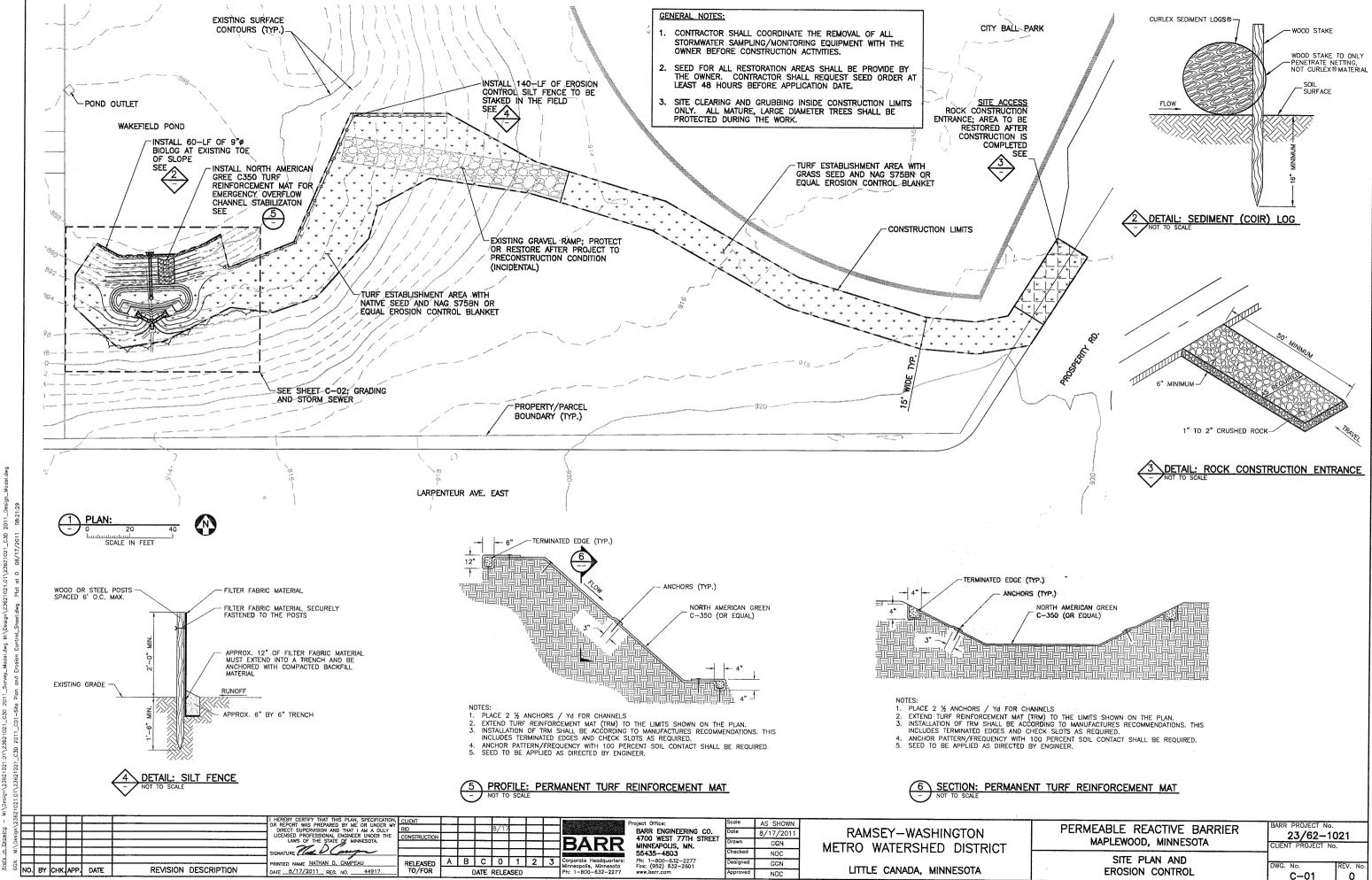
G-01

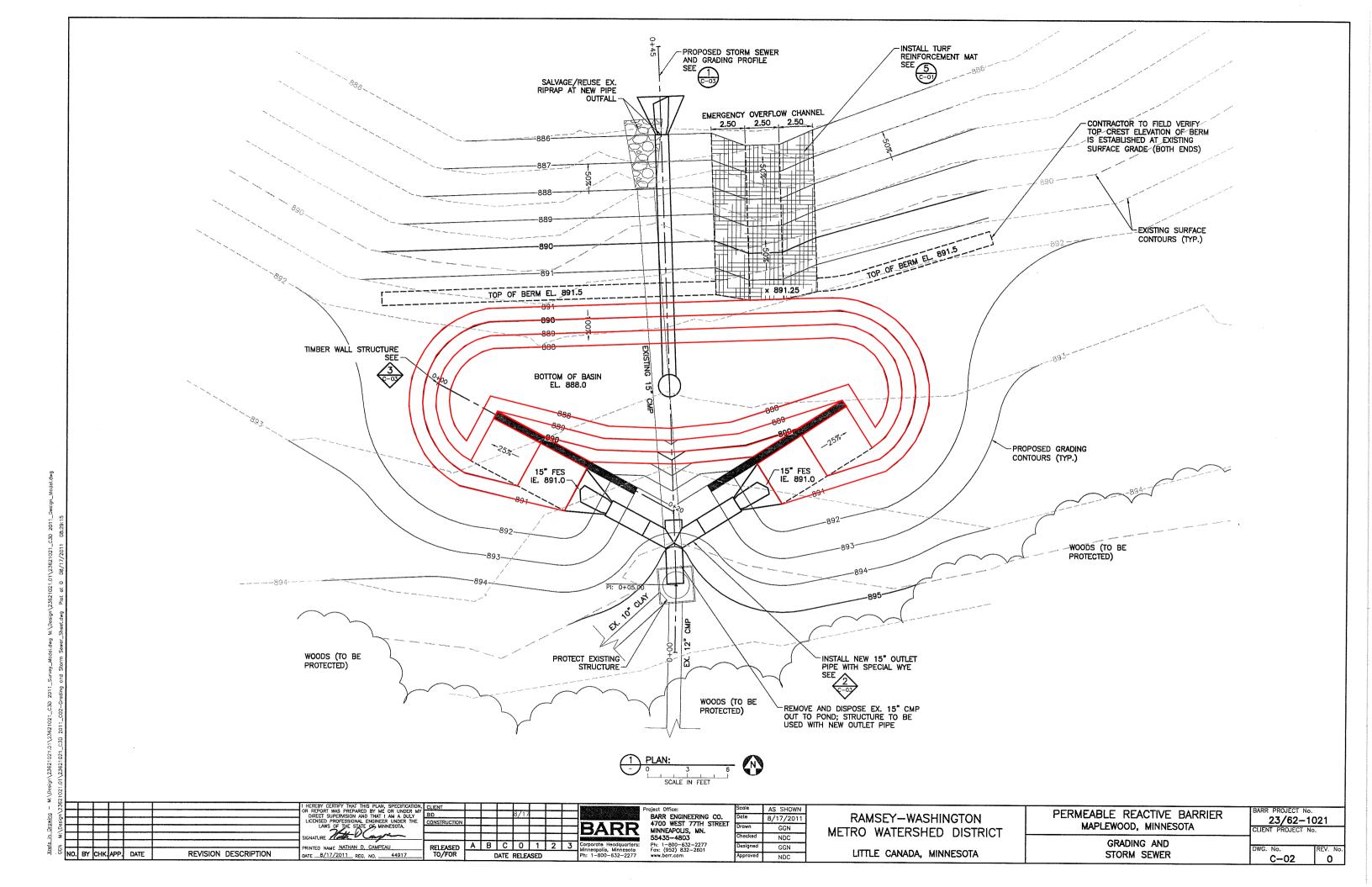
SITE LOCATION AND SHEET INDEX
SITE PLAN AND EROSION CONTROL

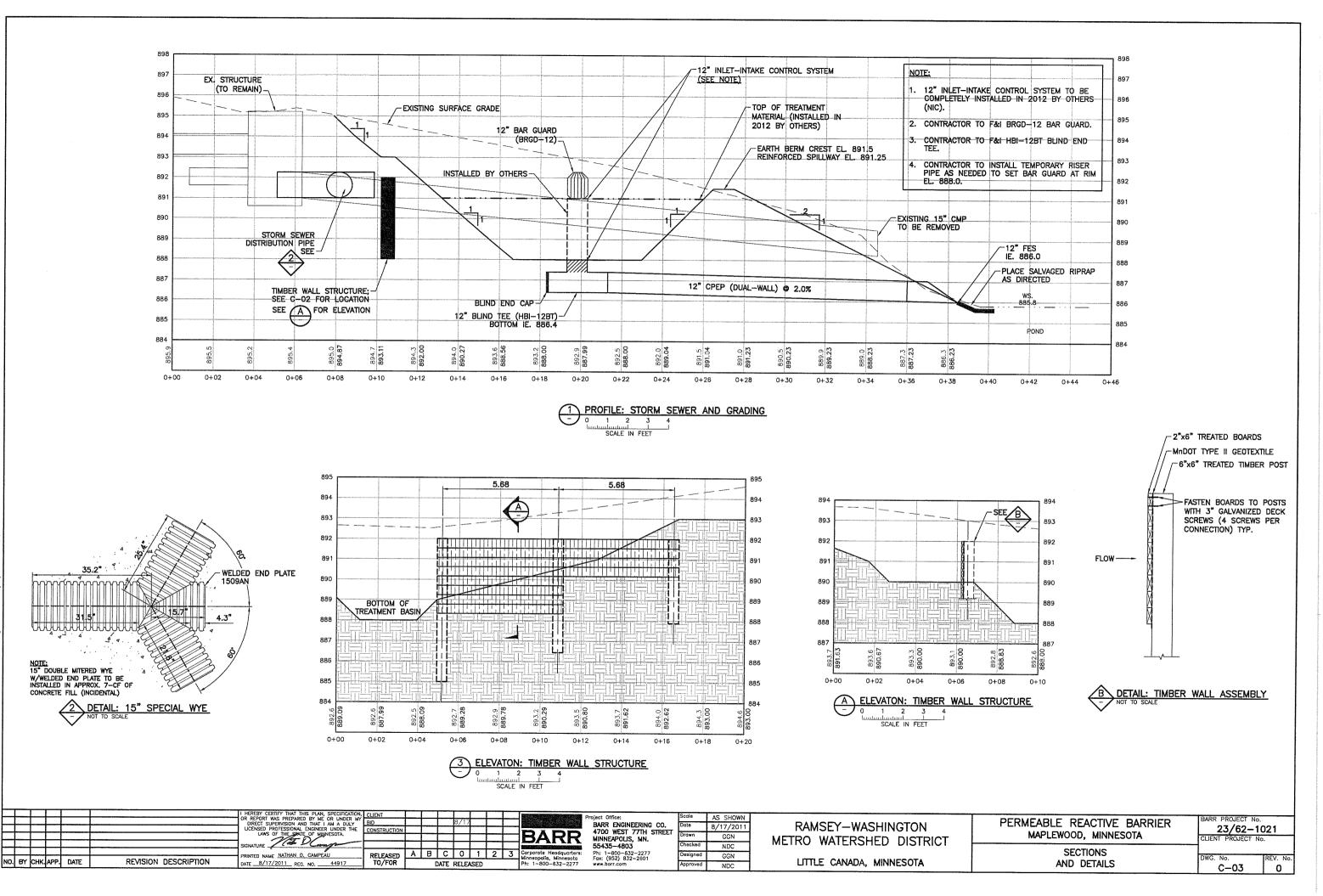
C-02

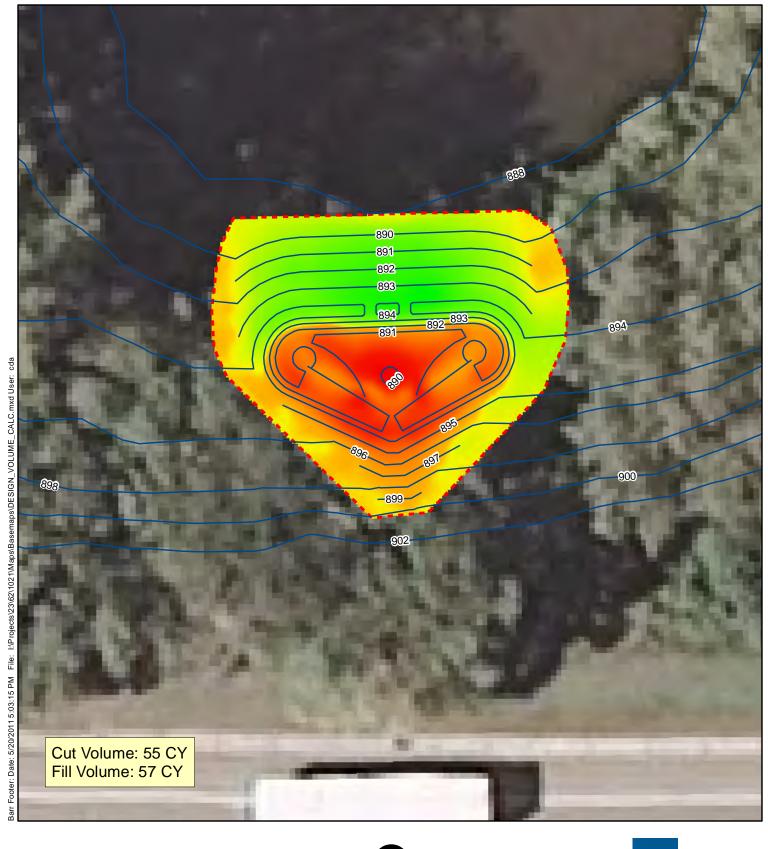
GRADING AND STORM SEWER

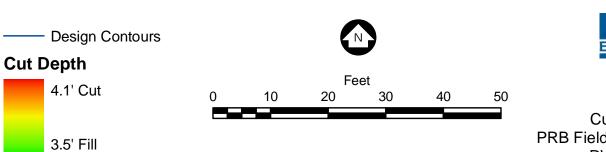
C-03


SECTIONS AND DETAILS


VICINITY MAP





192		<u> </u>	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION	Taura T T	<del></del>							
Drowing esign\2.			OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF, MINNESOTA.	BID CONSTRUCTION	8/17	PADD	Project Office:  BARR ENGINEERING CO.  4700 WEST 77TH STREET	Date	AS SHOWN B/17/2011	RAMSEY-WASHINGTON	PERMEABLE REACTIVE BARRIER	BARR PROJECT No. 23/62-1021
.= 2			SIGNATURE HER COMMITTEE			_BAKK	MINNEAPOLIS, MN.	Checked	GGN	METRO WATERSHED DISTRICT	MAPLEWOOD, MINNESOTA	CLIENT PROJECT No.
2000			PRINTED NAME NATHAN D. CAMPEAU	RELEASED A	B C 0 1 2	3 Corporate Headquarters:	55435-4803 Ph: 1-800-632-2277	Designed	NDC	WELLING WITH STOPPING	SITE LOCATION	
. 퇴영	NO. BY CHK APP. DATE	REVISION DESCRIPTION	DATE 8/17/2011 REG. NO. 44917	TO/FOR	DATE RELEASED	Minneapolis, Minnesata Ph: 1-800-632-2277	Fax: (952) 832-2601 www.barr.com	Approved	NDC	LITTLE CANADA, MINNESOTA	AND SHEET INDEX	DWG. No. REV. No.
				· · · · · · · · · · · · · · · · · · ·					1100	-		1 G-01 1 0

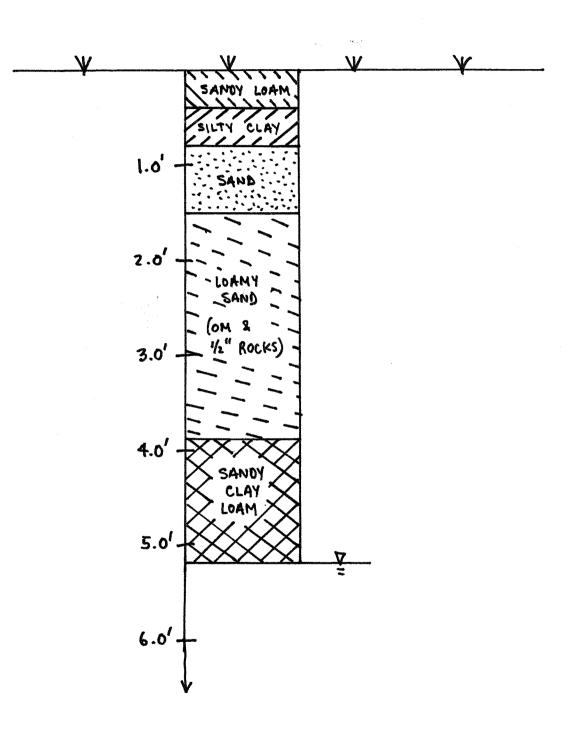

n/23621021.01/23621021_C3D 2011_G01-Site Location and Sheet Index_Sh

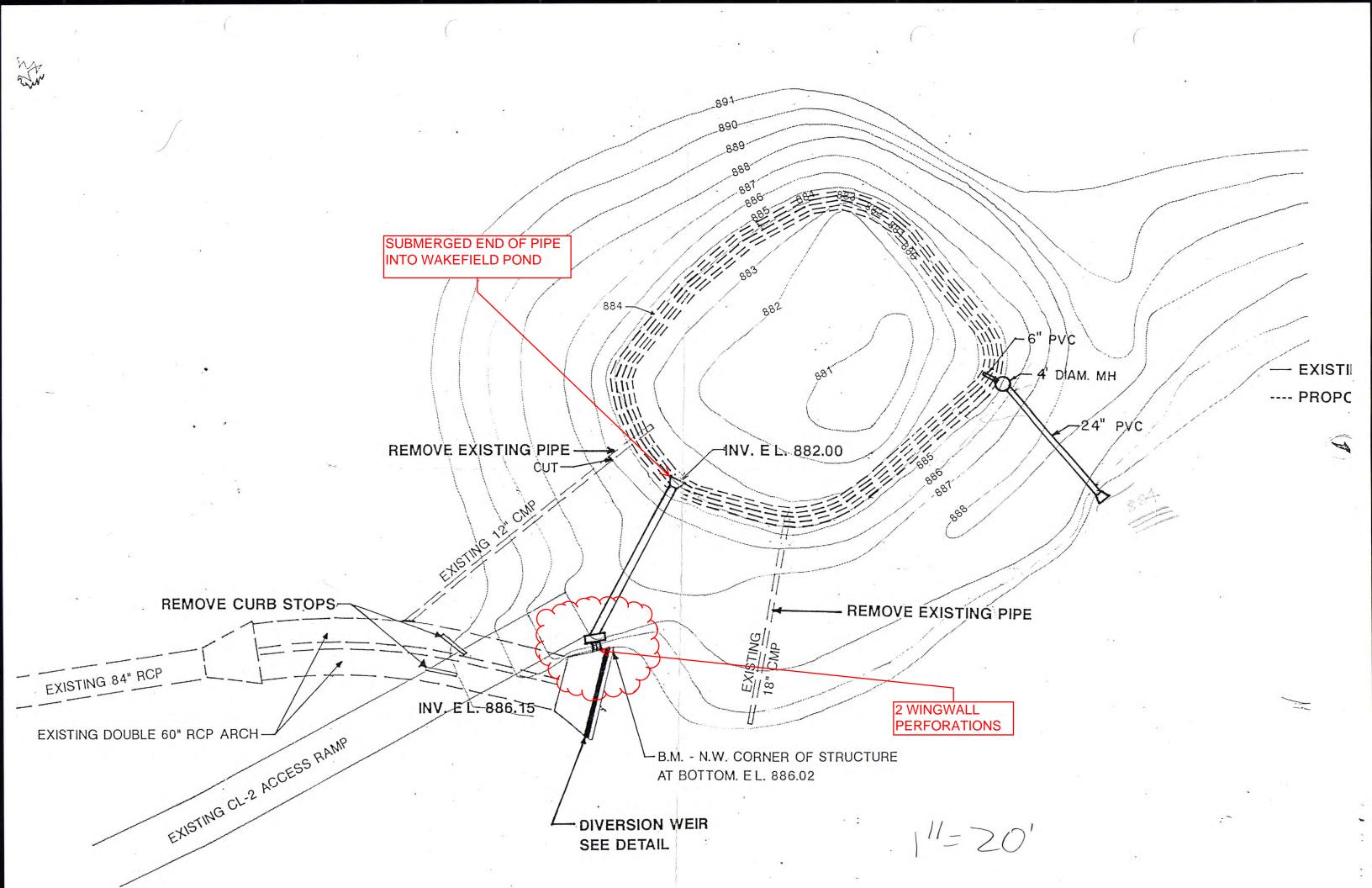











Cut & Fill PRB Field Study Design RWMWD Maplewood, MN HAND-AUGERED BORE HOLE NEAR WAKEFIELD POND.

DATE: 5/17/2011

LOCATION: WITHIN THE LINE TREATMENT BASIN





# Appendix C

Monitoring data collected in 2012 and 2013 for the pilot system

Table C-1. Concentration of metals, nutrients, and other constituents in stormwater entering the treatment cell (In) and after treatment (Out).

	Aluminur	m (mg/L)	Calcium	n (mg/L)	Coppe	r (ug/l)	Iron (	mg/L)	Lead	(ug/L)	Zinc (	ug/L)
Date	In	Out	In	Out	In	Out	In	Out	In	Out	In	Out
5/21/12	0.325	0.311	4.76	5.32	8.7	17.5	0.45	0.40	3.1	3.5	56.5	68.8
5/25/12	0.305	0.200	3.54	4.25	(1)	(1)	0.38	0.24	(1)	(1)	(1)	(1)
6/11/12	0.663	0.783	8.76	30.4	(1)	(1)	0.94	2.79	(1)	(1)	(1)	(1)
6/18/12	0.093	0.169	2.91	2.28	(1)	(1)	0.11	0.20	(1)	(1)	(1)	(1)
6/19/12	0.374	0.317	3.56	4.14	(1)	(1)	0.49	0.38	(1)	(1)	(1)	(1)

	Total Pho	sphorus	Total D	issolved	Ortho-Ph	osphorus	Total Su	spended		
	(mg	g/L)	Phosphor	rus (mg/L)	(m	g/L)	Solids	(mg/L)	Chloride (mg/L)	
Date	In	Out	In	Out	In	Out	In	Out	In	Out
5/21/12	0.360	0.160	0.300	<0.100	0.210	<0.02	34.8	37.8	3.9	12.9
5/25/12	0.180	<0.100	0.110	<0.100	0.050	<0.02	31.2	12.3	<4.0	4.1
6/11/12	0.34	0.270	(1)	(1)	0.046	0.062	(1)	(1)	(1)	(1)
6/18/12	0.110	0.110	0.120	<0.100	0.035	<0.02	(1)	(1)	<4.0	<4.0
6/19/12	0.150	<0.100	(1)	(1)	0.038	<0.02	17.7	40.3	<4.0	<4.0

Table C-2. Concentration of metals, nutrients, and other constituents in stormwater entering the treatment cell (In) and after treatment (Out).

	Aluminu	m (mg/L)	Calcium	n (mg/L)	Coppe	r (ug/l)	Iron (	mg/L)	Lead	(ug/L)	Zinc	(ug/L)
Date	In	Out	In	Out	In	Out	In	Out	In	Out	In	Out
5/20/2013	2.00	0.41	15.0	5.3	29	10	3	0.47	12	1.7	140	20
6/13/2013	1.20	0.11	10.0	3.7	20	2.5	1.7	0.12	8.8	0	110	6.6
6/17/2013	8.50	3.70	15.0	10.0	(1)	(1)	9.1	4	(1)	(1)	(1)	(1)
6/21/2013	4.00	2.00	12.0	10.0	21	24	4.5	2.1	9.3	3.8	82	35
6/24/2013	3.70	4.00	16.0	18.0	(1)	(1)	4.7	4.3	(1)	(1)	(1)	(1)
7/1/2013	1.10	1.10	6.5	7.3	(1)	(1)	1.2	1.1	(1)	(1)	(1)	(1)
7/15/2013	0.41	0.34	6.8	3.3	(1)	(1)	0.5	0.35	(1)	(1)	(1)	(1)
8/5/2013	0.98	0.16	10.0	11.0	(1)	(1)	1.4	0.2	(1)	(1)	(1)	(1)
10/3/2013	8.40	0.63	11.0	2.6	(1)	(1)	8.6	0.54	(1)	(1)	(1)	(1)

⁽¹⁾ Analyte not analyzed.

	Ortho-Ph	osphorus	Total Di	issolved	Total Ph	osphorus	Total Su	spended		
	(mg	g/L)	Phosphor	us (mg/L)	(mį	g/L)	Solids	(mg/L)	Chloride	e (mg/L)
Date	In	Out	In	Out	In	Out	In	Out	In	Out
5/20/2013	0.26	0	0.34	0.015	0.98	0.081	160	21	6.3	9.6
6/13/2013	0.1	0.014	(1)	(1)	0.29	0.049	58	8.5	2.9	4.0
6/17/2013	0.061	0.034	0.082	0.049	0.49	0.21	350	150	1.1	2.1
6/21/2013	0.16	0.046	0.13	0.019	0.49	0.18	170	78	2.2	4.9
6/24/2013	0.048	0.09	0.086	0.091	0.38	0.31	200	180	2.8	2.2
7/1/2013	0.048	0.036	0.063	0.055	0.12	0.11	110	48	0.4	3.5
7/15/2013	0.073	0.024	0.085	0.034	0.16	0.056	18	16	3.3	3.5
8/5/2013	0.15	0.015	0.12	0.02	0.29	0.081	70	9.5	2.9	22.0
10/3/2013	0.34	0.032	0.22	0.015	0.68	0.063	190	4	3.0	3.0

⁽¹⁾ Analyte not analyzed.

**Table C-3**. Phosphorus fractions and metals in sediment collected from the bottom of a pond that received the lime-cell treated stormwater.

#### Average of Cores 2012

Bottom Depth (cm)	Mobile P (mg/cm3)	AI-P (mg/cm3)	Ca-P (mg/cm3)	Org-P (mg/cm3)	Aluminum (g/kg)	Calcium (g/kg)	Iron (g/kg)
0-1	0.045	0.017	0.041	0.044	15.0	27.5	31.5
1-2	0.069	0.039	0.081	0.059	16.0	29.5	32.0
2-3	0.074	0.045	0.092	0.067	16.5	28.5	32.0
3-4	0.058	0.040	0.085	0.079	14.5	30.0	29.0
4-5	0.056	0.037	0.080	0.074	15.0	30.0	28.0
5-7	0.062	0.061	0.121	0.059	14.5	29.5	26.5
7-9	0.074	0.083	0.172	0.051	15.0	30.0	26.5
9-11	0.094	0.085	0.216	0.028	13.5	23.0	26.5
11-13	0.112	0.101	0.265	0.060	13.0	22.5	25.5
13-15	0.109	0.100	0.281	0.057	15.5	24.0	27.0
15-17	0.137	0.115	0.315	0.059	15.5	23.5	27.5
17-19	0.105	0.130	0.285	0.0	14.0	26.0	27.0
19-21	0.115	0.112	0.240	0.088	14.0	26.5	27.0

#### Average of Cores 2014

Bottom	Mobile P	Al-P	Ca-P	Org-P	Aluminum	Calcium	
Depth (cm)	(mg/cm3)	(mg/cm3)	(mg/cm3)	(mg/cm3)	(g/kg)	(g/kg)	Iron (g/kg)
0-2	0.013	0.015	0.035	0.056	13.0	17.0	21.7
2-4	0.029	0.035	0.073	0.053	14.0	20.3	23.3
4-6	0.046	0.060	0.100	0.034	15.0	24.0	25.7
6-8	0.048	0.068	0.112	0.041	16.0	25.3	26.3
8-10	0.052	0.074	0.120	0.031	14.7	29.7	21.7
10-15	0.053	0.102	0.191	0.025	11.6	27.7	20.7

### Attachment A

Pilot system laboratory data for sediment, spent lime, and toxicity





January 27, 2014

Mr. Jim Bode St. Paul Regional Water Serv. 1900 Rice St.N St. Paul, MN 55113

RE: Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

#### Dear Mr. Bode:

Enclosed are the analytical results for sample(s) received by the laboratory on December 17, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Shawn Davis shawn.davis@pacelabs.com

Phanem Janis

**Project Manager** 

**Enclosures** 





1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



#### **CERTIFICATIONS**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

**Minnesota Certification IDs** 

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01

Alabama Dept of Environmental Management #40770

Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: Pace

EPA Region 5 #WD-15J

Florida/NELAP Certification #: E87605

Georgia Certification #: 959 Hawaii Certification #Pace Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322

Montana Certification #: MT CERT0092 Nebraska Certification #: Pace Nevada Certification #: MN_00064 New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Michigan DEQ Certification #: 9909

Mississippi Certification #: Pace

Minnesota Certification #: 027-053-137

Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia/DCLS Certification #: 002521 Virginia/VELAP Certification #: 460163
Washington Certification #: C754

West Virginia Certification #: 382 Wisconsin Certification #: 999407970

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4 Greensburg, PA 15601

ACLASS DOD-ELAP Accreditation #: ADE-1544

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification California/TNI Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

**Delaware Certification** 

Florida/TNI Certification #: E87683

Guam/PADEP Certification Hawaii/PADEP Certification Idaho Certification

Illinois/PADEP Certification Indiana/PADEP Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana/TNI Certification #: LA080002 Louisiana/TNI Certification #: 4086 Maine Certification #: PA0091

Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification

**Green Bay Certification IDs** 

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334

Missouri Certification #: 235 Montana Certification #: Cert 0082 Nevada Certification

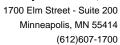
New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051

New Mexico Certification

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457

South Dakota Certification

Tennessee Certification #: TN2867


Texas/TNI Certification #: T104704188
Utah/TNI Certification #: ANTE Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198
Washington Certification #: C868

West Virginia Certification #: 143 Wisconsin/PADEP Certification Wyoming Certification #: 8TMS-Q

New York Certification #: 11888 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 US Dept of Agriculture #: S-76505 Wisconsin Certification #: 405132750

#### REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





#### **SAMPLE SUMMARY**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10252590001	WB SLURRY	Solid	12/16/13 11:00	12/17/13 10:44
10252590002	CAKE	Solid	12/16/13 11:00	12/17/13 10:44





#### **SAMPLE ANALYTE COUNT**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10252590001	WB SLURRY	EPA 6010	IP	19	PASI-M
		EPA 7471	WBS	1	PASI-M
		ASTM D2974	CMB	1	PASI-M
		EPA 901.1m	MAH	2	PASI-PA
		EPA 300.0	JCJ	1	PASI-G
		EPA 300.0	JCJ	2	PASI-G
		EPA 350.1	HMB	1	PASI-G
		EPA 351.2	HMB	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9012	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
0252590002	CAKE	EPA 6010	IP	19	PASI-M
		EPA 7471	WBS	1	PASI-M
		ASTM D2974	CMB	1	PASI-M
		EPA 901.1m	MAH	2	PASI-PA
		EPA 300.0	JCJ	1	PASI-G
		EPA 300.0	JCJ	2	PASI-G
		EPA 350.1	HMB	1	PASI-G
		EPA 351.2	HMB	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9012	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G



Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Date: 01/27/2014 03:44 PM

Sample: WB SLURRY Lab ID: 10252590001 Collected: 12/16/13 11:00 Received: 12/17/13 10:44 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6010 MET ICP** Analytical Method: EPA 6010 Preparation Method: EPA 3050 Aluminum 725 mg/kg 95.3 5 12/21/13 06:35 12/27/13 08:59 7429-90-5 Arsenic ND mg/kg 9.5 5 12/21/13 06:35 12/27/13 08:59 7440-38-2 Barium 39.0 mg/kg 4.8 12/21/13 06:35 12/27/13 08:59 7440-39-3 5 Boron ND mg/kg 71.5 5 12/21/13 06:35 12/27/13 08:59 7440-42-8 12/21/13 06:35 12/27/13 08:59 7440-43-9 Cadmium ND mg/kg 1.4 5 Calcium 353000 mg/kg 238 5 12/21/13 06:35 12/27/13 08:59 7440-70-2 Chromium 217 mg/kg 4.8 12/21/13 06:35 12/27/13 08:59 7440-47-3 5 9.6 mg/kg 4.8 5 12/21/13 06:35 12/27/13 08:59 7440-50-8 Copper **1660** mg/kg 23.8 12/21/13 06:35 12/27/13 08:59 7439-89-6 5 Iron ND mg/kg 12/21/13 06:35 12/27/13 08:59 7439-92-1 9.5 5 Lead 26000 mg/kg 238 12/21/13 06:35 12/27/13 08:59 7439-95-4 Magnesium 5 Manganese 198 mg/kg 2.4 5 12/21/13 06:35 12/27/13 08:59 7439-96-5 Molybdenum ND mg/kg 7.1 5 12/21/13 06:35 12/27/13 08:59 7439-98-7 141 mg/kg 9.5 12/21/13 06:35 12/27/13 08:59 7440-02-0 Nickel 5 Potassium ND mg/kg 1190 12/21/13 06:35 12/27/13 08:59 7440-09-7 Selenium ND mg/kg 7.1 5 12/21/13 06:35 12/27/13 08:59 7782-49-2 Silver ND mg/kg 4.8 5 12/21/13 06:35 12/27/13 08:59 7440-22-4 Sodium ND mg/kg 477 5 12/21/13 06:35 12/27/13 08:59 7440-23-5 Zinc 13.8 mg/kg 9.5 5 12/21/13 06:35 12/27/13 08:59 7440-66-6 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 ND mg/kg 0.041 12/24/13 13:57 12/26/13 12:43 7439-97-6 Mercury **Dry Weight** Analytical Method: ASTM D2974 Percent Moisture 55.9 % 0.10 1 12/17/13 00:00 300.0 IC Anions Analytical Method: EPA 300.0 Preparation Method: EPA 300.0 Nitrate as N ND mg/kg 6.8 12/23/13 09:56 12/24/13 10:03 14797-55-8 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0 Chloride ND ma/ka 91.1 1 12/23/13 09:56 12/24/13 10:03 16887-00-6 Sulfate 91.1 12/23/13 09:56 12/24/13 10:03 14808-79-8 ND mg/kg 1 350.1 Ammonia Analytical Method: EPA 350.1 Preparation Method: EPA 350.1 Nitrogen, Ammonia ND mg/kg 27.2 12/30/13 19:45 12/30/13 21:37 7664-41-7 Analytical Method: EPA 351.2 Preparation Method: EPA 351.2 351.2 Total Kjeldahl Nitrogen Nitrogen, Kjeldahl, Total ND mg/kg 181 12/26/13 14:00 12/26/13 17:36 7727-37-9 1 Analytical Method: EPA 365.4 Preparation Method: EPA 365.4 365.4 Total Phosphorus Phosphorus ND mg/kg 62.6 01/03/14 08:40 01/03/14 12:39 7723-14-0 Analytical Method: EPA 9012 Preparation Method: EPA 9012A 9012 Cyanide, Total Cvanide ND mg/kg 0.97 12/23/13 09:30 12/23/13 14:56 57-12-5





Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Date: 01/27/2014 03:44 PM

Sample: WB SLURRY Lab ID: 10252590001 Collected: 12/16/13 11:00 Received: 12/17/13 10:44 Matrix: Solid

Results reported on a "dry-weigi Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon		thod: EPA 906						
Surrogates	Analytical Me	illod. LFA 900	o iviodilled					
RPD%	66.6 %		0.10	1		12/30/13 10:13		
Total Organic Carbon	ND m	ng/kg	250	1		12/30/13 10:03	7440-44-0	
Total Organic Carbon	ND m	ng/kg	250	1		12/30/13 10:13	7440-44-0	
Mean Total Organic Carbon	ND m	ng/kg	250	1		12/30/13 10:13	7440-44-0	1M



Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Date: 01/27/2014 03:44 PM

Sample: CAKE Lab ID: 10252590002 Collected: 12/16/13 11:00 Received: 12/17/13 10:44 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6010 MET ICP** Analytical Method: EPA 6010 Preparation Method: EPA 3050 Aluminum 5350 mg/kg 109 5 12/21/13 06:35 12/27/13 09:06 7429-90-5 Arsenic ND mg/kg 10.9 5 12/21/13 06:35 12/27/13 09:06 7440-38-2 Barium 122 mg/kg 5.4 12/21/13 06:35 12/27/13 09:06 7440-39-3 5 Boron ND mg/kg 81.6 5 12/21/13 06:35 12/27/13 09:06 7440-42-8 12/21/13 06:35 12/27/13 09:06 7440-43-9 Cadmium ND mg/kg 1.6 5 Calcium 333000 mg/kg 272 5 12/21/13 06:35 12/27/13 09:06 7440-70-2 Chromium 184 mg/kg 5.4 12/21/13 06:35 12/27/13 09:06 7440-47-3 5 15.3 mg/kg 5.4 5 12/21/13 06:35 12/27/13 09:06 7440-50-8 Copper 5080 mg/kg 27.2 12/21/13 06:35 12/27/13 09:06 7439-89-6 5 Iron ND mg/kg 12/21/13 06:35 12/27/13 09:06 7439-92-1 10.9 5 Lead 35700 mg/kg 12/21/13 06:35 12/27/13 09:06 7439-95-4 Magnesium 272 5 Manganese 115 mg/kg 2.7 5 12/21/13 06:35 12/27/13 09:06 7439-96-5 Molybdenum ND mg/kg 8.2 5 12/21/13 06:35 12/27/13 09:06 7439-98-7 116 mg/kg 10.9 12/21/13 06:35 12/27/13 09:06 7440-02-0 Nickel 5 Potassium ND mg/kg 1360 12/21/13 06:35 12/27/13 09:06 7440-09-7 Selenium ND mg/kg 8.2 5 12/21/13 06:35 12/27/13 09:06 7782-49-2 Silver ND mg/kg 5.4 5 12/21/13 06:35 12/27/13 09:06 7440-22-4 Sodium ND mg/kg 544 5 12/21/13 06:35 12/27/13 09:06 7440-23-5 ND mg/kg Zinc 10.9 5 12/21/13 06:35 12/27/13 09:06 7440-66-6 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 ND mg/kg 0.046 12/24/13 13:57 12/26/13 12:49 7439-97-6 Mercury **Dry Weight** Analytical Method: ASTM D2974 Percent Moisture 59.3 % 0.10 1 12/17/13 00:00 300.0 IC Anions Analytical Method: EPA 300.0 Preparation Method: EPA 300.0 Nitrate as N ND mg/kg 7.4 12/23/13 09:56 12/24/13 10:14 14797-55-8 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0 Chloride 113 ma/ka 98.9 1 12/23/13 09:56 12/24/13 10:14 16887-00-6 Sulfate 98.9 12/23/13 09:56 12/24/13 10:14 14808-79-8 ND mg/kg 1 350.1 Ammonia Analytical Method: EPA 350.1 Preparation Method: EPA 350.1 Nitrogen, Ammonia 74.4 mg/kg 36.9 12/30/13 19:45 12/30/13 21:38 7664-41-7 Analytical Method: EPA 351.2 Preparation Method: EPA 351.2 351.2 Total Kjeldahl Nitrogen Nitrogen, Kjeldahl, Total 831 mg/kg 223 12/26/13 14:00 12/26/13 17:36 7727-37-9 Analytical Method: EPA 365.4 Preparation Method: EPA 365.4 365.4 Total Phosphorus Phosphorus 117 mg/kg 89.4 01/03/14 08:40 01/03/14 12:39 7723-14-0 Analytical Method: EPA 9012 Preparation Method: EPA 9012A 9012 Cyanide, Total Cvanide ND mg/kg 1.3 12/23/13 09:30 12/23/13 14:56 57-12-5 M0, R1





Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Date: 01/27/2014 03:44 PM

Sample: CAKE Collected: 12/16/13 11:00 Received: 12/17/13 10:44 Matrix: Solid Lab ID: 10252590002

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon	Analytical Me	thod: EPA 906	0 Modified					
Surrogates								
RPD%	28.4 %	, 0	0.10	1		12/30/13 10:26		
Total Organic Carbon	<b>1800</b> m	ng/kg	752	1		12/30/13 10:23	7440-44-0	
Total Organic Carbon	<b>1350</b> m	ng/kg	735	1		12/30/13 10:26	7440-44-0	
Mean Total Organic Carbon	<b>1580</b> m	ng/kg	744	1		12/30/13 10:26	7440-44-0	

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



#### **QUALITY CONTROL DATA**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Date: 01/27/2014 03:44 PM

QC Batch: MERP/9868 Analysis Method: EPA 7471

QC Batch Method: EPA 7471 Analysis Description: 7471 Mercury

Associated Lab Samples: 10252590001, 10252590002

METHOD BLANK: 1599833 Matrix: Solid

Associated Lab Samples: 10252590001, 10252590002

Blank Reporting
Parameter Units Result Limit

Parameter Units Result Limit Analyzed Qualifiers

Mercury mg/kg ND 0.020 12/26/13 12:39

LABORATORY CONTROL SAMPLE: 1599834

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury mg/kg .43 0.45 106 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1599835 1599836

MS MSD MS 10252590001 Spike Spike MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 1 1.0 80-120 5 20 Mercury mg/kg ND .98 1.1 104 103

(612)607-1700



#### **QUALITY CONTROL DATA**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Date: 01/27/2014 03:44 PM

QC Batch: MPRP/43860 Analysis Method: EPA 6010
QC Batch Method: EPA 3050 Analysis Description: 6010 MET

Associated Lab Samples: 10252590001, 10252590002

METHOD BLANK: 1599829 Matrix: Solid

Associated Lab Samples: 10252590001, 10252590002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum	mg/kg	ND	9.3	12/26/13 17:45	
Arsenic	mg/kg	ND	0.93	12/26/13 17:45	
Barium	mg/kg	ND	0.46	12/26/13 17:45	
Boron	mg/kg	ND	6.9	12/26/13 17:45	
Cadmium	mg/kg	ND	0.14	12/26/13 17:45	
Calcium	mg/kg	ND	23.1	12/26/13 17:45	
Chromium	mg/kg	ND	0.46	12/26/13 17:45	
Copper	mg/kg	ND	0.46	12/26/13 17:45	
Iron	mg/kg	ND	2.3	12/26/13 17:45	
Lead	mg/kg	ND	0.93	12/26/13 17:45	
Magnesium	mg/kg	ND	23.1	12/26/13 17:45	
Manganese	mg/kg	ND	0.23	12/26/13 17:45	
Molybdenum	mg/kg	ND	0.69	12/26/13 17:45	
Nickel	mg/kg	ND	0.93	12/26/13 17:45	
Potassium	mg/kg	ND	116	12/26/13 17:45	
Selenium	mg/kg	ND	0.69	12/26/13 17:45	
Silver	mg/kg	ND	0.46	12/26/13 17:45	
Sodium	mg/kg	ND	46.3	12/26/13 17:45	
Zinc	mg/kg	ND	0.93	12/26/13 17:45	

LABORATORY CONTROL SA	MPLE: 1599830					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	mg/kg	490	489	100	80-120	
Arsenic	mg/kg	49	48.0	98	80-120	
Barium	mg/kg	49	50.2	102	80-120	
Boron	mg/kg	49	46.9	96	80-120	
Cadmium	mg/kg	49	47.4	97	80-120	
Calcium	mg/kg	490	507	103	80-120	
Chromium	mg/kg	49	50.7	104	80-120	
Copper	mg/kg	49	49.7	101	80-120	
Iron	mg/kg	490	489	100	80-120	
Lead	mg/kg	49	49.1	100	80-120	
Magnesium	mg/kg	490	489	100	80-120	
Manganese	mg/kg	49	50.9	104	80-120	
Molybdenum	mg/kg	49	51.5	105	80-120	
Nickel	mg/kg	49	49.5	101	80-120	
Potassium	mg/kg	490	521	106	80-120	
Selenium	mg/kg	49	45.9	94	80-120	
Silver	mg/kg	24.5	23.2	95	80-120	
Sodium	mg/kg	490	488	100	80-120	

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





#### **QUALITY CONTROL DATA**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Date: 01/27/2014 03:44 PM

LABORATORY CONTROL SAMPLE: 1599830

Spike LCS LCS % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers

Zinc mg/kg 49 48.0 98 80-120

MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	E: 15998	31		1599832							
			MS	MSD								
	102	252773001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Aluminum	mg/kg	2320	504	483	3500	3530	236	251	75-125	.8	30	M1
Arsenic	mg/kg	ND	50.4	48.3	50.6	49.6	100	102	75-125	2	30	
Barium	mg/kg	15.8	50.4	48.3	66.6	68.9	101	110	75-125	3	30	
Boron	mg/kg	ND	50.4	48.3	50.3	48.5	100	100	75-125	4	30	
Cadmium	mg/kg	ND	50.4	48.3	49.1	49.2	97	102	75-125	.05	30	
Calcium	mg/kg		504	483	9230	8760	40	-53	75-125	5	30	M1
Chromium	mg/kg	5.4	50.4	48.3	56.9	57.1	102	107	75-125	.4	30	
Copper	mg/kg	2.6	50.4	48.3	54.4	54.7	103	108	75-125	.6	30	
Iron	mg/kg	4680	504	483	5360	5480	135	165	75-125	2	30	M1
Lead	mg/kg	1.6	50.4	48.3	50.3	49.7	97	100	75-125	1	30	
Magnesium	mg/kg		504	483	2800	2740	46	34	75-125	2	30	M1
Manganese	mg/kg	110	50.4	48.3	160	176	100	136	75-125	9	30	M1
Molybdenum	mg/kg		50.4	48.3	51.5	51.0	102	105	75-125	1	30	
Nickel	mg/kg	5.1	50.4	48.3	52.7	52.8	95	99	75-125	.3	30	
Potassium	mg/kg	275	504	483	873	869	119	123	75-125	.4	30	
Selenium	mg/kg	0.73	50.4	48.3	49.2	48.5	96	99	75-125	2	30	
Silver	mg/kg	ND	25.2	24.1	24.2	24.1	96	100	75-125	.3	30	
Sodium	mg/kg	83.7	504	483	624	625	107	112	75-125	.1	30	
Zinc	mg/kg	8.4	50.4	48.3	56.0	55.9	94	98	75-125	.1	30	

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



#### **QUALITY CONTROL DATA**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

QC Batch: MPRP/43804 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 10252590001, 10252590002

SAMPLE DUPLICATE: 1596847

10252527003 Dup Max
Parameter Units Result RPD RPD Qualifiers

Percent Moisture % 6.0 5.7 6 30

SAMPLE DUPLICATE: 1596848

Date: 01/27/2014 03:44 PM

10252520002 Dup Max RPD RPD Parameter Units Result Result Qualifiers Percent Moisture % 18.3 19.6 7 30

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



#### **QUALITY CONTROL DATA**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

QC Batch: WETA/21299 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 10252590001, 10252590002

METHOD BLANK: 916234 Matrix: Solid

Associated Lab Samples: 10252590001, 10252590002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/kg	ND	40.0	12/24/13 11:42	
Nitrate as N	mg/kg	ND	3.0	12/24/13 11:42	
Sulfate	ma/ka	ND	40.0	12/24/13 11:42	

LABORATORY CONTROL SAMPLE: 916235

Date: 01/27/2014 03:44 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/kg	200	191	96	80-120	
Nitrate as N	mg/kg	20	19.5	97	80-120	
Sulfate	mg/kg	200	195	98	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 91623	6		916237							
			MS	MSD								
10252590001		Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/kg	ND	456	456	501	496	90	89	80-120	1	20	
Nitrate as N	mg/kg	ND	45.6	45.6	46.7	46.2	97	95	80-120	1	20	
Sulfate	mg/kg	ND	456	456	509	485	99	93	80-120	5	20	

Minneapolis, MN 55414 (612)607-1700



## **QUALITY CONTROL DATA**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Date: 01/27/2014 03:44 PM

QC Batch: WETA/21286 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Analysis Description: 350.1 Ammonia

Associated Lab Samples: 10252590001, 10252590002

METHOD BLANK: 915790 Matrix: Solid

Associated Lab Samples: 10252590001, 10252590002

Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Ammonia mg/kg ND 15.0 12/30/13 21:33

LABORATORY CONTROL SAMPLE: 915791

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Ammonia mg/kg 300 300 100 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 915792 915793

MSD MS 10252590002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Nitrogen, Ammonia 737 768 80-120 20 mg/kg 74.4 737 799 98 94

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 917669 917670

MS MSD MS MSD MS MSD 10253352006 Spike Spike % Rec Max Parameter Units % Rec RPD Result Conc. Conc. Result Result % Rec Limits RPD Qual Nitrogen, Ammonia 30.2 261 279 293 326 101 106 80-120 11 20 mg/kg

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



## **QUALITY CONTROL DATA**

Project: SPENT LIME-PRESS CAKE

Pace Project No.:

10252590

QC Batch: QC Batch Method:

WETA/21310 EPA 351.2

Analysis Method: Analysis Description: EPA 351.2 351.2 TKN

Associated Lab Samples:

10252590001, 10252590002

Matrix: Solid

METHOD BLANK: 916427 Associated Lab Samples:

10252590001, 10252590002

Blank

Reporting

Parameter

Units

Units

Result

Limit

Analyzed

Qualifiers

Nitrogen, Kjeldahl, Total

mg/kg

ND

100 12/26/13 17:32

LABORATORY CONTROL SAMPLE: 916428

Parameter

Parameter

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Nitrogen, Kjeldahl, Total

Nitrogen, Kjeldahl, Total

mg/kg

Units

mg/kg

500

502

100

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

916429

MSD

MS

Spike

MS

916430

MSD Result

MS % Rec % Rec Limits

Max RPD RPD

37000

4090360001 Spike Result Conc.

Conc. 1810 1640

Result 39100 39200

128

% Rec 126

MSD

80-120 0

20 P6

Qual

Date: 01/27/2014 03:44 PM

**REPORT OF LABORATORY ANALYSIS** 

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Minneapolis, MN 55414 (612)607-1700



## **QUALITY CONTROL DATA**

SPENT LIME-PRESS CAKE Project:

Pace Project No.: 10252590

QC Batch: WETA/21407

QC Batch Method: EPA 365.4 Analysis Method:

EPA 365.4

Analysis Description:

365.4 Total Phosphorus

Associated Lab Samples: 10252590001, 10252590002

METHOD BLANK: 918414

Associated Lab Samples:

10252590001, 10252590002

Blank

Reporting

Parameter

Units

Result

Limit Analyzed

Qualifiers

Phosphorus

mg/kg

ND

Matrix: Solid

40.0 01/03/14 12:33

LABORATORY CONTROL SAMPLE: 918415

Parameter

Parameter

Units

10252590002

Result

Units

mg/kg

mg/kg

Spike Conc.

MS

Spike

Conc.

MS

Spike

Conc.

33400

1120

LCS Result

LCS % Rec % Rec Limits

MS

% Rec

93

100

80-120

Qualifiers

mg/kg 500 511 102

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

918416

MSD

918417

MS

Result

1150

MSD

Result

MSD

95

93

% Rec Limits

Max RPD RPD

2890

117

MSD

Spike

Conc.

1120

33400

918419

1180

% Rec

80-120

3 20 Qual

Qual

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

918418

MSD MS MSD

% Rec

Max

Parameter

Phosphorus

Date: 01/27/2014 03:44 PM

Phosphorus

Phosphorus

4090425001 Units Result

Spike Conc.

MS Result

36300

Result % Rec 34100

% Rec

Limits 80-120

RPD

RPD 6 20

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



## **QUALITY CONTROL DATA**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Date: 01/27/2014 03:44 PM

QC Batch: WETA/21295 Analysis Method: EPA 9012
QC Batch Method: EPA 9012A Analysis Description: 9012 Cyanide

Associated Lab Samples: 10252590001, 10252590002

METHOD BLANK: 916125 Matrix: Solid

Associated Lab Samples: 10252590001, 10252590002

Blank Reporting
Parameter Units Result Limit

Parameter Units Result Limit Analyzed Qualifiers

Cyanide mg/kg ND 0.60 12/23/13 14:53

LABORATORY CONTROL SAMPLE: 916126

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Cyanide mg/kg 3.1 102 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 916127 916128

MS MSD 10252590002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 6.7 20 M0,R1 Cyanide mg/kg ND 6.39 6.39 4.6 66 100 80-120 38

## **REPORT OF LABORATORY ANALYSIS**

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



## **QUALITY CONTROL DATA**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

QC Batch: WETA/21368 QC Batch Method: EPA 9060 Modified Analysis Method: EPA 9060 Modified

Analysis Description:

9060 TOC Average

95

Associated Lab Samples: 10252590001, 10252590002

METHOD BLANK: 917729

Matrix: Solid

Associated Lab Samples:

Mean Total Organic Carbon

Mean Total Organic Carbon

Date: 01/27/2014 03:44 PM

Blank Result

Parameter Units Reporting Limit

Analyzed Qualifiers

Mean Total Organic Carbon ND 250 12/30/13 09:53 mg/kg

LABORATORY CONTROL SAMPLE: 917730

> Spike Parameter Units Conc.

> > mg/kg

LCS LCS Result % Rec % Rec Limits

80-120

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

917731

12300

917732

946

201151338002 Parameter Units Result

mg/kg

MS MSD Spike Spike Conc. Conc. 10000 9110

1000

MS MSD Result Result 22500 23100

MS % Rec 112

MSD % Rec % Rec Limits 50-150 108

Max RPD RPD

Qual 3 30

**REPORT OF LABORATORY ANALYSIS** 

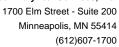




# **ANALYTICAL RESULTS**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590


Date: 01/27/2014 03:44 PM

Sample: WB SLURRY Lab ID: 10252590001 Collected: 12/16/13 11:00 Received: 12/17/13 10:44 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1m	0.650 ± 0.194 (0.343)	pCi/g	01/16/14 10:40	13982-63-3	
Radium-228	EPA 901.1m	$0.348 \pm 0.187  (0.576)$	pCi/g	01/16/14 10:40	15262-20-1	



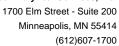


# **ANALYTICAL RESULTS**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Date: 01/27/2014 03:44 PM


Sample: CAKE Lab ID: 10252590002 Collected: 12/16/13 11:00 Received: 12/17/13 10:44 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1m	0.576 ± 0.200 (0.209)	pCi/g	01/16/14 10:56	13982-63-3	
Radium-228	EPA 901.1m	-0.060 ± 4.356 (0.590)	pCi/g	01/16/14 10:56	15262-20-1	

# **REPORT OF LABORATORY ANALYSIS**





# **QUALITY CONTROL DATA**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

QC Batch: RADC/18222 Analysis Method: EPA 901.1m

QC Batch Method: EPA 901.1m Analysis Description: 901.1 Gamma Spec Ingrowth

Associated Lab Samples: 10252590001, 10252590002

METHOD BLANK: 675905 Matrix: Solid

Associated Lab Samples:

Date: 01/27/2014 03:44 PM

Parameter	Act ± Unc (MDC)	Units	Analyzed	Qualifiers
Radium-226	-0.025 ± 0.989 (0.195)	pCi/g	01/16/14 08:46	
Radium-228	$0.014 \pm 0.118  (0.237)$	pCi/g	01/16/14 08:46	



## **QUALIFIERS**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty

(MDC) - Minimum Detectable Concentration

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

# **LABORATORIES**

PASI-G	Pace Analytical Services - Green Bay
PASI-M	Pace Analytical Services - Minneapolis
PASI-PA	Pace Analytical Services - Greensburg

## **BATCH QUALIFIERS**

Batch: WETA/21368

[WB] Results reported on dry weight basis per cited method.

Batch: WETA/21369

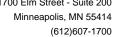
[WB] Results reported on dry weight basis per cited method.

## **ANALYTE QUALIFIERS**

Date: 01/27/2014 03:44 PM

1M Analysis conducted with full boat (0.04g), resulting in under range detection.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.


M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

spike level.

R1 RPD value was outside control limits.

## REPORT OF LABORATORY ANALYSIS





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: SPENT LIME-PRESS CAKE

Pace Project No.: 10252590

Date: 01/27/2014 03:44 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10252590001	WB SLURRY	EPA 3050	MPRP/43860	EPA 6010	ICP/18457
10252590002	CAKE	EPA 3050	MPRP/43860	EPA 6010	ICP/18457
10252590001	WB SLURRY	EPA 7471	MERP/9868	EPA 7471	MERC/11342
10252590002	CAKE	EPA 7471	MERP/9868	EPA 7471	MERC/11342
10252590001 10252590002	WB SLURRY CAKE	ASTM D2974 ASTM D2974	MPRP/43804 MPRP/43804		
10252590001	WB SLURRY	EPA 901.1m	RADC/18169	EPA 901.1m	RADC/18222
10252590002	CAKE	EPA 901.1m	RADC/18169	EPA 901.1m	RADC/18222
10252590001	WB SLURRY	EPA 300.0	WETA/21299	EPA 300.0	WETA/21308
10252590002	CAKE	EPA 300.0	WETA/21299	EPA 300.0	WETA/21308
10252590001	WB SLURRY	EPA 300.0	WETA/21299	EPA 300.0	WETA/21308
10252590002	CAKE	EPA 300.0	WETA/21299	EPA 300.0	WETA/21308
10252590001	WB SLURRY	EPA 350.1	WETA/21286	EPA 350.1	WETA/21380
10252590002	CAKE	EPA 350.1	WETA/21286	EPA 350.1	WETA/21380
10252590001	WB SLURRY	EPA 351.2	WETA/21310	EPA 351.2	WETA/21336
10252590002	CAKE	EPA 351.2	WETA/21310	EPA 351.2	WETA/21336
10252590001	WB SLURRY	EPA 365.4	WETA/21407	EPA 365.4	WETA/21425
10252590002	CAKE	EPA 365.4	WETA/21407	EPA 365.4	WETA/21425
10252590001	WB SLURRY	EPA 9012A	WETA/21295	EPA 9012	WETA/21306
10252590002	CAKE	EPA 9012A	WETA/21295	EPA 9012	WETA/21306
10252590001	WB SLURRY	EPA 9060 Modified	WETA/21368		
10252590001	WB SLURRY	EPA 9060 Modified	WETA/21369		
10252590002	CAKE	EPA 9060 Modified	WETA/21368		
10252590002	CAKE	EPA 9060 Modified	WETA/21369		

# **REPORT OF LABORATORY ANALYSIS**

Pace Analytical www.pacelabs.com

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

1025 2540

Pace Project No./ Lab I.D. Samples Intact (Y/N) DRINKING WATER SAMPLE CONDITIONS 00 46031 (N/Y)OTHER Sealed Cooler Custody S Ice (Y/V) 0 Received on GROUND WATER Residual Chlorine (Y/N) 63 O° ni qmeT Page: 3 REGULATORY AGENCY Requested Analysis Filtered (Y/N) TIME Site Location STATE: DATE NPDES UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION 72 8, mi 🌡 JeaT eisylsnA 🌡 N/A Other SYDYS Methanol B00 Preservatives Na₂S₂O₃ HOBN HCI 18 EONH Company Name: [⊅]OS^ZH Pace Quote Reference: Pace Project Manager: Pace Profile # Section C Unpreserved TIME Attention: Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION DATE 8:7 110 11:10 TIME Project Name: SPENTLIME-POESS CALE COMPOSITE END/GRAB ARELA BWOOKERDI 9/6) 12/16 DATE COLLECTED RELINQUISHED BY / AFFILIATION TIME COMPOSITE START Purchase Order No.: 31066 Report To: JIM BODE DATE Section B Required Project Information: **SAMPLE TYPE** (G=GRAB C=COMP) Project Number: (see valid codes to left) MATRIX CODE ORIGINAL Copy To: 22 PW 42 PW Matrix Codes MATRIX / CODE Drinking Water Water Waste Water Product Soil/Solid Oil Wipe Air Tissue Other Fax: US-1640 adression pice street ADDITIONAL COMMENTS 57278 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 3 SAMPLED Co Required Client Information Section A Required Client Information: Requested Due Date/TAT: Company: SPKWS Phone: 651-266-1631 Naint Section D Email To: 10 ဖ œ တ ç TEM # 7 ო ເດ ~ Page 24 of 25

F-ALL-Q-020rev.07, 15-May-2007

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days

# Pace Analytical*

### Document Name:

## Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.08

Document Revised: 07Nov2013

Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Project #: WO#: 10252590 **Client Name: Upon Receipt** USPS Client Courier: Other: Commercial Pace Tracking Number: Proj. Due Date: Proj. Name: Optional: Custody Seal on Cooler/Box Present? Yes No Seals Intact? Yes No Temp Blank? Packing Material: Bubble Wrap Bubble Bags Other: None JP1217-13 □B88A912167504 80512447 Samples on ice, cooling process has begun Blue Wet None Type of ice: Thermom. Used: B88A9132521491 72337080 Biological Tissue Frozen? Yes No Cooler Temp Read (°C): 6. Cooler Temp Corrected (°C): Date and Initials of Person Examining Contents: (jア / 2・/ 子・/ ろ **Correction Factor:** Temp should be above freezing to 6°C Chain of Custody Present? Yes No □N/A 1. Yes □No □N/A 2. Chain of Custody Filled Out? ☐ Yes No □N/A Chain of Custody Relinquished? No □N/A Yes Sampler Name and/or Signature on COC? □No □N/A 5. Yes Samples Arrived within Hold Time? Yes No □N/A 6. Short Hold Time Analysis (<72 hr)? Yes No □N/A 7. Rush Turn Around Time Requested? - Yes □No □N/A 8. Sufficient Volume? □N/A 9. Yes No Correct Containers Used? □N/A Yes □No -Pace Containers Used? □N/A Yes □No 10. Containers Intact? Filtered Volume Received for Dissolved Tests? □No N/A 11. □ Yes 12. Yes No □N/A Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have HCI ■ NaOH Yes No N/A 13. ∏HNO₃ ∐H₂SO₄ been checked? Noncompliances are noted in 13. Sample # All containers needing preservation are found to be in DA/A compliance with EPA recommendation? Yes No (HNO₃, H₂SO₄, HCl<2; NaOH>12) Lot # of added Exceptions: VOA, Coliform, TOC, Oil and Grease, NO Yes preservative: Initial when completed: WI-DRO (water) DOC DN/A 14. Yes No Headspace in VOA Vials (>6mm)? DA/A 15. Yes □No Trip Blank Present? - N/A Yes □No Trip Blank Custody Seals Present? Pace Trip Blank Lot # (if purchased): Field Data Required? Yes No **CLIENT NOTIFICATION/RESOLUTION** Date/Time: Person Contacted: Comments/Resolution:

Project Manager Review:

Note: Whenever there is a discrepancy affecting North Carolina Compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)



Braun Intertec Corporation 11001 Hampshire Avenue S. Minneapolis, MN 55438 Phone: 952.995.2000
Fax: 952.995.2020
Web: braunintertec.com

Mr. Keith Pilgrim Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803 December 01, 2011

Report #: 1106761

RE: Permeable Reactive Barrier 23/62-1021

Dear Keith Pilgrim:

Braun Intertec Corporation received samples for the project identified above on November 23, 2011. Analytical results are summarized in the following report.

All routine quality assurance procedures were followed, unless otherwise noted.

Analytical results are reported on an "as received" basis unless otherwise noted. Where possible, the samples will be retained by the laboratory for 14 days following issuance of the initial final report. The samples will be disposed of or returned at that time. Arrangements can be made for extended storage by contacting me at this time.

We appreciate your decision to use Braun Intertec Corporation for this project. We are committed to being your vendor of choice to meet your analytical chemistry needs.

If you have any questions please contact me at the above phone number.

How J. albricht

Sincerely,

Steven J. Albrecht

Project Manager

**Certification/Accreditation Number** 

Minnesota Department of Health #027-053-117

Providing engineering and environmental solutions since 1957

Page 1 of 13



Barr Engineering Company Client Ref: Permeable Reactive Barrier 23/62-1021 Report #: 1106761

4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr: Steven J. Albrecht

Minneapolis, MN 55435-4803 PO Number: Account ID: B01058

# **Qualifiers and Abbreviations**

sd See case narrative section for further information.

COC Chain of Custody

dry Sample results reported on a dry weight basis

MRL Method Reporting Limit

NA Not Applicable

ND Analyte NOT DETECTED

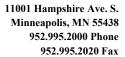
NR Not Reported

%Rec Percent Recovery

RPD Relative Percent Difference

VOC Volatile Organic Compound




Barr Engineering Company Client Ref: Permeable Reactive Barrier 23/62-1021 Report #: 1106761

4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr: Steven J. Albrecht

Minneapolis, MN 55435-4803 PO Number: Account ID: B01058

## **Case Narrative**

In the analysis of Aluminum, Calcium, and Iron in soil, the Matrix Spike (MS)/Matrix Spike Duplicate (MSD) results are not reported due to a high level of these analytes in the source sample. The amount of spike added to the MS/MSD samples was overwhelmed by the level of the analytes in the source sample, resulting in non-valid data for the MS/MSD.





4700 West 77th StreetClient Contact: Mr. Keith PilgrimProject Mgr. Steven J. AlbrechtMinneapolis, MN 55435-4803PO Number:Account ID: B01058

# Sample Summary

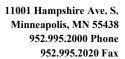
G . I TO		<b></b>	D. C. I.I.	D . D
Sample ID	<b>Laboratory ID</b> 1106761-01	Matrix Soil	Date Sampled	Date Received
WP1 (0-1 cm)			08/19/11 00:00	11/23/11 15:40
WP1 (1-2 cm)	1106761-02	Soil	08/19/11 00:00	11/23/11 15:40
WP1 (2-3 cm)	1106761-03	Soil	08/19/11 00:00	11/23/11 15:40
WP1 (3-4 cm)	1106761-04	Soil	08/19/11 00:00	11/23/11 15:40
WP1 (4-5 cm)	1106761-05	Soil	08/19/11 00:00	11/23/11 15:40
WP1 (6-7 cm)	1106761-06	Soil	08/19/11 00:00	11/23/11 15:40
WP1 (8-9 cm)	1106761-07	Soil	08/19/11 00:00	11/23/11 15:40
WP1 (10-11 cm)	1106761-08	Soil	08/19/11 00:00	11/23/11 15:40
WP1 (12-13 cm)	1106761-09	Soil	08/19/11 00:00	11/23/11 15:40
WP1 (14-15 cm)	1106761-10	Soil	08/19/11 00:00	11/23/11 15:40
WP1 (16-17 cm)	1106761-11	Soil	08/19/11 00:00	11/23/11 15:40
WP1 (18-19 cm)	1106761-12	Soil	08/19/11 00:00	11/23/11 15:40
WP1 (20-21 cm)	1106761-13	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (0-1 cm)	1106761-14	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (1-2 cm)	1106761-15	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (2-3 cm)	1106761-16	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (3-4 cm)	1106761-17	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (4-5 cm)	1106761-18	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (6-7 cm)	1106761-19	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (8-9 cm)	1106761-20	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (10-11 cm)	1106761-21	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (12-13 cm)	1106761-22	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (14-15 cm)	1106761-23	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (16-17 cm)	1106761-24	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (18-19 cm)	1106761-25	Soil	08/19/11 00:00	11/23/11 15:40
WP2 (20-21 cm)	1106761-26	Soil	08/19/11 00:00	11/23/11 15:40



Barr Engineering Company Client Ref: Permeable Reactive Barrier 23/62-1021 Report #: 1106761

4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr: Steven J. Albrecht

Minneapolis, MN 55435-4803 PO Number: Account ID: B01058

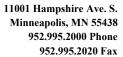

# **Conditions Upon Receipt**

Cooler: Cooler 1

Temperature: 18.8 °C COC Included: Yes Custody Seals Used: No

Temperature Blank: No COC Complete: Yes Custody Seals Intact: NA Received on Ice: No COC & Labels Agree: Yes Hand Delivered by Client: Yes

Preservation Confirmed: No Sufficient Sample Provided: Yes Headspace Present (VOC): No

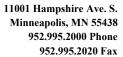





4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr: Steven J. Albrecht

Minneapolis, MN 55435-4803 PO Number: Account ID: B01058

	Analyte	Result	MRL	Units	Batch	Prepared	Analyzed	Method	Notes
1106761-01	WP1 (0-1 cm)					-	-		
	Aluminum	14000	50	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	29000	200	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	33000	100	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-02	WP1 (1-2 cm)								
	Aluminum	16000	48	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	30000	190	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	31000	96	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-03	WP1 (2-3 cm)								
	Aluminum	17000	47	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	28000	190	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	34000	95	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-04	WP1 (3-4 cm)								
	Aluminum	14000	45	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	29000	180	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	28000	90	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-05	WP1 (4-5 cm)								
	Aluminum	15000	45	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	28000	180	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	29000	90	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-06	WP1 (6-7 cm)								
	Aluminum	15000	45	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	30000	180	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	27000	89	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-07	WP1 (8-9 cm)								
	Aluminum	15000	43	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	31000	170	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	27000	86	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-08	WP1 (10-11 cm)								
	Aluminum	14000	48	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	21000	190	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	25000	97	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-09	WP1 (12-13 cm)								
	Aluminum	12000	43	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	15000	170	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	25000	85	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-10	WP1 (14-15 cm)								






4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr. Steven J. Albrecht

Minneapolis, MN 55435-4803 PO Number: Account ID: B01058

	Analyte	Result	MRL	Units	Batch	Prepared	Analyzed	Method	Notes
1106761-10	WP1 (14-15 cm)					-	-		
	Aluminum	16000	43	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	18000	170	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	27000	85	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-11	WP1 (16-17 cm)								
	Aluminum	15000	45	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	17000	180	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	27000	90	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-12	WP1 (18-19 cm)								
	Aluminum	16000	47	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	26000	190	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	32000	94	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-13	WP1 (20-21 cm)								
	Aluminum	14000	47	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	23000	190	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	28000	94	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-14	WP2 (0-1 cm)								
	Aluminum	13000	42	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	26000	170	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	30000	84	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-15	WP2 (1-2 cm)								
	Aluminum	16000	45	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
	Calcium	29000	180	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	
	Iron	33000	90	mg/kg	B1K0540	11/25/11	11/28/11	EPA 6010B	sd
1106761-16	WP2 (2-3 cm)								
	Aluminum	16000	49	mg/kg	B1K0540	11/25/11	11/29/11	EPA 6010B	sd
	Calcium	29000	200	mg/kg	B1K0540	11/25/11	11/29/11	EPA 6010B	
	Iron	30000	98	mg/kg	B1K0540	11/25/11	11/29/11	EPA 6010B	sd
1106761-17	WP2 (3-4 cm)								
	Aluminum	15000	50	mg/kg	B1K0540	11/25/11	11/29/11	EPA 6010B	sd
	Calcium	31000	200	mg/kg	B1K0540	11/25/11	11/29/11	EPA 6010B	
	Iron	30000	100	mg/kg	B1K0540	11/25/11	11/29/11	EPA 6010B	sd
1106761-18	WP2 (4-5 cm)								
	Aluminum	15000	46	mg/kg	B1K0540	11/25/11	11/29/11	EPA 6010B	sd
	Calcium	32000	180	mg/kg	B1K0540	11/25/11	11/29/11	EPA 6010B	
	Iron	27000	92	mg/kg	B1K0540	11/25/11	11/29/11	EPA 6010B	sd
1106761-19	WP2 (6-7 cm)								





4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr. Steven J. Albrecht Minneapolis, MN 55435-4803 PO Number: Account ID: B01058

	Analyte	Result	MRL	Units	Batch	Prepared	Analyzed	Method	Notes
1106761-19	WP2 (6-7 cm)								
	Aluminum	14000	45	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Calcium	29000	180	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Iron	26000	91	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
1106761-20	WP2 (8-9 cm)								
	Aluminum	15000	47	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Calcium	29000	190	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Iron	26000	93	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
1106761-21	WP2 (10-11 cm)								
	Aluminum	13000	43	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Calcium	25000	170	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Iron	28000	85	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
1106761-22	WP2 (12-13 cm)								
	Aluminum	14000	45	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Calcium	30000	180	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Iron	26000	89	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
1106761-23	WP2 (14-15 cm)								
	Aluminum	15000	42	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Calcium	30000	170	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Iron	27000	84	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
1106761-24	WP2 (16-17 cm)								
	Aluminum	16000	45	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Calcium	30000	180	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Iron	28000	91	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
1106761-25	WP2 (18-19 cm)								
	Aluminum	12000	50	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Calcium	26000	200	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Iron	22000	100	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
1106761-26	WP2 (20-21 cm)								
	Aluminum	14000	47	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Calcium	30000	190	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd
	Iron	26000	93	mg/kg	B1K0574	11/29/11	11/29/11	EPA 6010B	sd



Barr Engineering Company Client Ref: Permeable Reactive Barrier 23/62-1021 Report #: 1106761

4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr: Steven J. Albrecht Minneapolis, MN 55435-4803

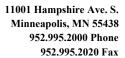
PO Number: Account ID: B01058

# **Metals - Quality Control**

Method Blank (B1K0540-BLK1)						Prepare				
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	< 5.0	5.0	mg/kg	NA	NA	NA	NA	NA	NA	
Calcium	< 20	20	mg/kg	NA	NA	NA	NA	NA	NA	
fron	< 10	10	mg/kg	NA	NA	NA	NA	NA	NA	
Laboratory Control Sample (B1K054	0-BS1)					Prepared	d: 11/25/11	Analyzed:	11/28/11	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	210	5.0	mg/kg	200	NA	105	80-120	NA	NA	
Calcium	5190	20	mg/kg	5000	NA	104	80-120	NA	NA	
Iron	202	10	mg/kg	200	NA	101	80-120	NA	NA	
Laboratory Control Sample Duplicate	e (B1K0540-BS	SD1)				Prepare	d: 11/25/11	Analyzed:	11/28/11	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	212	5.0	mg/kg	200	NA	106	80-120	0.946	20	
Calcium	5170	20	mg/kg	5000	NA	103	80-120	0.403	20	
ron	204	10	mg/kg	200	NA	102	80-120	0.930	20	
Standard Reference Material (B1K05	40-SRM1)					Prepare	d: 11/25/11	Analyzed:	11/28/11	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Aluminum	10300	10	mg/kg	10100	NA	102	33.8-133	NA	NA	
Calcium	7400	41	mg/kg	7020	NA	105	70.8-120	NA	NA	
Iron	15600	20	mg/kg	15000	NA	104	25.1-139	NA	NA	
Batch B1K0574 - EPA 3050B										
Method Blank (B1K0574-BLK1)						Prepare	d & Analyz	ed: 11/29/1	1	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	< 5.0	5.0	mg/kg	NA	NA	NA	NA	NA	NA	
Calcium	< 20	20	mg/kg	NA	NA	NA	NA	NA	NA	
Iron	< 10	10	mg/kg	NA	NA	NA	NA	NA	NA	



Barr Engineering Company Client Ref: Permeable Reactive Barrier 23/62-1021 Report #: 1106761


4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr: Steven J. Albrecht Minneapolis, MN 55435-4803 Account ID: B01058

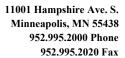
PO Number:

# **Metals - Quality Control**

# Batch B1K0574 - EPA 3050B

Laboratory Control Sample (B11	Laboratory Control Sample (B1K0574-BS1)					Prepared	d & Analyze	ed: 11/29/1	1	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	215	5.0	mg/kg	200	NA	108	80-120	NA	NA	
Calcium	4990	20	mg/kg	5000	NA	99.9	80-120	NA	NA	
Iron	203	10	mg/kg	200	NA	101	80-120	NA	NA	
<b>Laboratory Control Sample Dup</b>	licate (B1K0574-BS	SD1)				Prepared	d & Analyze	ed: 11/29/1	1	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	215	5.0	mg/kg	200	NA	107	80-120	0.352	20	
Calcium	4930	20	mg/kg	5000	NA	98.6	80-120	1.26	20	
Iron	201	10	mg/kg	200	NA	101	80-120	0.741	20	
Standard Reference Material (B1	1K0574-SRM1)					Prepared	d & Analyze	ed: 11/29/1	1	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	10600	10	mg/kg	10100	NA	105	33.8-133	NA	NA	
Calcium	7430	40	mg/kg	7020	NA	106	70.8-120	NA	NA	
Iron	15700	20	mg/kg	15000	NA	104	25.1-139	NA	NA	






Barr Engineering Company Client Ref: Permeable Reactive Barrier 23/62-1021 Report #: 1106761 4700 West 77th Street

Client Contact: Mr. Keith Pilgrim Project Mgr: Steven J. Albrecht

PO Number: Account ID: B01058 Minneapolis, MN 55435-4803

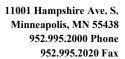
Chain of	Cust	ody										)	Num	ber o	of Cont	ainers	Pre	serv	ative				. 3
ARR 4700 West 77th Minneapolis, N (952) 832-2600	IN 5543.	5-4803								F		T	Water	1			Т	Sc	li		F	COC o	
roject Number: Z3/6Z		71				_	_	_	_	1					Iron							Project Manager: K. F	ilgrim
roject Name: Permen			ile	Barrie	~						62	100	6,0	GIG:	4 7		(pa)		rved) #2 vial, apprex.)		ntainers	Project QC Contact:	
ample Origination State / 1											(paul	NO.	(paul	2 M4	Calcinen	(HO	Medi	(pax	red) e		S L	.,	
OC Number:					N	0	3	31	02	96	prese	Is CHE	aprese	H ₂ SO	1	Me.	(tared	preser	preser		ber 0	Sampled by: K-	Menkes
Location		Stop Depth	Depth Unit (m./ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Mai	trix	Grab	jpe di d	VOCs (HC	SVOCs (unpreserved) #2	Total Meta	General (unpreserved) #3	Nutrients (	Aluminum	VOCs (tare	GRO, BTEX (tared McDR) #2 DRO (tared unpreserved)	Metals (unpreserved)	SVOCs (unpreserved)#2		fotal Number Of Contains	Sampled by: K-	Иh
WP1(0-1)			CM	08/19/2011		)	1	П		T		T	П	Ť	1	T	Ť	П	T	$\top$	İ		
WPI (1-Z)										T		Ť	П	T	1	П	Ť	П		$\Box$	T		
WPI (2-3)										T		T	П	T	1	П	T	П	T	$\parallel$	Γ		
NP1 (3-4)										Γ		T	П	T	/	П	T				T		
vPI (4-5)						П				Γ		T		T	П	П					T		
MP1 (5-7)										T		T	П	T	1	П	Ť	П	T				
NPI (8-9)										T		T	П	T	(		T	П	T	$\parallel$	T		
NP1 (10-11)										T		Ť	Ħ	T	1	П	Ť	П			T		
wp1 (12-13)						Ш				T		Ť	Ħ	Ť	ı	П	Ť	П	T		T		
WP1 (4-15)				V		V	7		T	Ť		Ť	Ħ	Ť	П		Ť	П	Ť		T		
ommon Parameter/Containe			Key J	Relinquished By:	Nerken		On	Ice D	11	Pan Z3	//	15	Time	0	Receiv	711	t					Date	Time
Volatile Organics = BTEX, GR Semivolatile Organics = PAHs, Full List, Herbicide/Pesticide/Pt	PCP, Dieu CBs	ins, 8270	450	telinquished By:			On	lce?	-	Date		-	Time	$\rightarrow$	Receiv	- 17	W					II 33 H	1540 Time
General = pH, Chloride, Fluori TDS, TS, Sulfate Nutrients = COD, TOC, Phene Nitrogen, TKN			S	iamples Shipped	VIA: Air F		0	Fed	eral 1	Expe	ess		iampl	er	Air Bil	l Num	ber:						





Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803 Client Ref: Permeable Reactive Barrier 23/62-1021

Client Contact: Mr. Keith Pilgrim


PO Number:

Report #: 1106761

Project Mgr: Steven J. Albrecht

Account ID: B01058

Chain of		oay								L		1	Num	ber	of Cont	ainers	Pres	erva	tive			000	7	ot _3	
BARR Minneapolis,	MN 5543	5-4803								Н		Τ,	Vater	_		+	_	So	il		Н	coc.		01	
(952) 832-260							_			1					5			Ш			П	Project Manager			
Project Number: Z3/6															0			П			2				
Project Name: Pérmeas	le R	rac f	he !	Barrier						П	262	3	2	3	£ ,		(p	Ш	pres.)		taine	Project QC Con	tact:		
Sample Origination State	(use two	letter	postal st	ste abbreviation)						1	(pan	202	(pand	Same C	clerk	(HO	Media.	(pa/	rica) #2 vial, unpres.)		r Con				
COC Number:					N	0	3	31	03	13.86	SVOCs (unpreserved) #2	Is (HN	General (unpreserved) #3	Re U7	2	VOCs (tared MeOH) #7	d unpr	preserv	Solids (plastic vial, anpr		Number Of Contains	Sampled	by:		
Location	Start	Stop	Depth Unit	Collection	Collection	-	atrix		ype	ļΞ	S (un)	Meta	ral c	carts of	TIME	(tar	(tare	5	OCS (unprese Solids (plastic						
Location		Depth		Date (mm/dd/yyyy)	Time (hh:mm)	Waser	33	Grab	Comp.	V00	SVO	Total	Gene	Nutra	Alun	V0C	DRO.	Meta	S Sol		Total	Laborato	ry:		
WP1 (16-17)				08/19/2011			X	Τ					П	T	1	П	T	П			П				
2WP1 (18-19)				1		П	1	T		T		T	П	Ť	l		Ť	П			П				
3. WP1 (20-Z1)						П	Ħ	T	T	T	T	t	H	Ť	t	$\dagger$	t	Н			Н				
wp2(0-1)						П	Ħ	T	T	T	T	t	H	t	1	$\dagger$	t	H			Н				
WP2 (1-2)						П	Ħ	t	T	T	T	t	H	†	1	$\dagger$	t	H			Н				
WPZ (2-3)							Ħ	t	T	t	T	t	H	$^{+}$	(	$\dagger$	+	Н			Н				
WPZ (3-4)						П	Ħ	t		t	H	t	H	t	3		$^{+}$	Н	Н		Н				
"WPZ (4-5)							Ħ	t	†	t	H	t	H	t	ı	+	$^{+}$	Н			Н				
WP2 (6-7)						Н	Ħ	t				t	Н	$^{+}$	1	+	$^{+}$	Н			Н				
10. WPZ (8-9)				V		Н	1	t	+	H	H	t	Н	†	7	+	+	Н	Н	Н	Н				
Common Parameter/Contain	er - Prese	rvation l	Key E	Relinquished By:		Ш		lce	2	Date			Time	+	Receiv	ed by	′	Ш			Ш		Date	Tir	
1 - Volatile Organics = BTEX, G. 2 - Semivolatile Organics = PAH:				Relinquished By:			+	N Ice	?	Date			Time		Receiv	00	_					ħ	Date Date	150 Tin	
Full List, Herbicide/Pesticide/F	CBs			,				N							2464614	ou oy:							1,7800	1 11	ic
General = pH, Chloride, Fluoride, Alkalinity, TSS, TDS, TS, Sulfate  Samples Shipped VIA:   Air Freight Nitrogen, TEN  Other:  Other:							E [	Fed	eral l	Expre	255	□s	ampl	cr	Air Bi	l Num	ber:								





Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803 Client Ref: Permeable Reactive Barrier 23/62-1021

Client Contact: Mr. Keith Pilgrim

PO Number:

Report #: 1106761

Project Mgr: Steven J. Albrecht

Account ID: B01058

Chain of Custody							Num	ber of	Cont	ainers	Pres	ervativ	c		6145.5	3		3
4700 West 77th Street Minnanolis MN 55435-4802							Wate	r				Soil			COC	:	of _	$\mathcal{L}$
Minneapolis, MN 55435-4803 (952) 832-2600									2					П	Project			
Project Number: 23/62 - 1021									404					,				
roject Name: Permeable Reactiv	e Barrie	^				20	6 8	EG	deine		(pa		bres.)	Container	Project QC C	t ontact:		
ample Origination State of W(use two letter postal	state abbreviation)					(paul	NO ₃ )	t) #4	Calci	OH) #	reserv	(pour	ii.					
OC Number:		N	0 3	7052	2	aprese	Metallo als (Hi	(H250	( J	ed Me	d and	preser	lastic	Number Of	Sample	ed by:		
Location Start Stop Unit (m.i. Depth Or in	t Collection L Date	Collection Time (hh:mm)	Matrix	Type grad o	OC S	SVOCS (III	Donnived Metals (HNO3) Total Metals (HNO3) General (unpreserved)#3	Diesel Range Organic Nutrients (H2SO ₄ ) #4	Alamin	VOCs (tar	GRO, BTEX (rared MeDH) #1 DRO (tared unpreserved)	Metals (unpreserved) SVOCs (unpreserved)#2	% Solida (plastic vial, unpres.)	Total Nun	Labora	atory:		
WPZ (10-11)	08/19/2011		X		T	П			(	T				Ť				
WPZ (12-13)									1									
WPZ (14-15)									1									
WPZ (16-17)									1									
WPZ (18-19)	(								1									
WPZ (20-Z1)	V		V						(									
10.						П												
Common Parameter/Container - Preservation Key	Relinquished By:			1 Ice?	Du	rte	Time		Receiv	ed by:	4.					Parte/		Time 5V()
Volatile Organics = BTEX, GRO TPH, 8260 Full List Semivolatile Organics = PAHs, PCP, Dioxins, 8270 Full List, Herbicide/Pesticide/PCRs	Relinquished By:			loe?	Da	ite	Tim	0	Receive	ed by:	-					Date	- /	Time
- General = pH. Chloride, Fluoride, Alkalinio, TSS, TDS, TS, Sulfate - Nutrients = COD, TOC, Phenols, Ammoria Nitrogen, TKN		Еф	oress	Samp	ler .	Air Bil	l Nun	iber:										



Braun Intertec Corporation 11001 Hampshire Avenue S. Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

Mr. Keith Pilgrim Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803 February 28, 2014

Report #: 1400783

RE: Spent Lime Pond 23621021.01 200 003

Dear Keith Pilgrim:

Braun Intertec Corporation received samples for the project identified above on February 19, 2014. Analytical results are summarized in the following report.

All routine quality assurance procedures were followed, unless otherwise noted.

Analytical results are reported on an "as received" basis unless otherwise noted. Where possible, the samples will be retained by the laboratory for 14 days following issuance of the initial final report. The samples will be disposed of or returned at that time. Arrangements can be made for extended storage by contacting me at this time.

We appreciate your decision to use Braun Intertec Corporation for this project. We are committed to being your vendor of choice to meet your analytical chemistry needs.

If you have any questions please contact me at the above phone number.

Sincerely,

Elizabeth Kadlec For Steven J. Albrecht

Chyatean Kadhe

Project Manager

Providing engineering and environmental solutions since 1957

Reports\RPT 41.01 Page 1 of 13



Barr Engineering Company Client Ref: Spent Lime Pond 23621021.01 200 003 Report #: 1400783

4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr: Steven J. Albrecht

Minneapolis, MN 55435-4803 PO Number: Account ID: B01058

# **Qualifiers and Abbreviations**

sd See case narrative section for further information.

qo The relative percent difference (RPD) was outside of laboratory control limits for the matrix spike (MS) and matrix spike duplicate (MSD) samples.

qn The spike recovery is outside of laboratory control limits for the matrix spike (MS) and/or the matrix spike duplicate (MSD).

J Detected but below the Method Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

COC Chain of Custody

dry Sample results reported on a dry weight basis

MDL Method Detection Limit

MRL Method Reporting Limit

NA Not Applicable

ND Analyte NOT DETECTED above the MDL value

NR Not Reported

%Rec Percent Recovery

RPD Relative Percent Difference

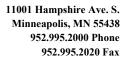
VOC Volatile Organic Compound



Barr Engineering Company Client Ref: Spent Lime Pond 23621021.01 200 003 Report #: 1400783

4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr: Steven J. Albrecht

Minneapolis, MN 55435-4803 PO Number: Account ID: B01058


## **Case Narrative**

The sample containers in Cooler 1 were received at 19.4 °C. This exceeds the regulatory requirement of 6 °C.

In the analysis of Aluminum, Calcium, and Iron in Soil the Matrix Spike (MS)/Matrix Spike Duplicate (MSD) results from preparation batch B4B0335 are not reported due to high levels of target analyte in the source sample. The source sample was another sample from the same preparation batch. The amount of spike used in the MS/MSD was overwhelmed by the level of the analyte in the source sample, resulting in non-valid data for the MS/MSD.

In the analysis of Aluminum and Iron in Soil the Matrix Spike (MS)/Matrix Spike Duplicate (MSD) results from preparation batch B4B0360 are not reported due to high levels of target analyte in the source sample. The source sample was another sample from the same preparation batch. The amount of spike used in the MS/MSD was overwhelmed by the level of the analyte in the source sample, resulting in non-valid data for the MS/MSD.

In the analysis of Calcium in Soil, the Matrix Spike (MS)/Matrix Spike Duplicate (MSD) results from preparation batch B4B0360 are based on the results of a source sample from another project.





4700 West 77th StreetClient Contact: Mr. Keith PilgrimProject Mgr. Steven J. AlbrechtMinneapolis, MN 55435-4803PO Number:Account ID: B01058

# **Sample Summary**

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Core 1 (0-2 cm)	1400783-01	Soil	01/10/14 13:00	02/19/14 13:18
Core 1 (2-4 cm)	1400783-02	Soil	01/10/14 13:01	02/19/14 13:18
Core 1 (4-6 cm)	1400783-03	Soil	01/10/14 13:02	02/19/14 13:18
Core 1 (6-8 cm)	1400783-04	Soil	01/10/14 13:03	02/19/14 13:18
Core 1 (8-10 cm)	1400783-05	Soil	01/10/14 13:04	02/19/14 13:18
Core 1 (10-15 cm)	1400783-06	Soil	01/10/14 13:05	02/19/14 13:18
Core 2 (0-2 cm)	1400783-07	Soil	01/10/14 13:15	02/19/14 13:18
Core 2 (2-4 cm)	1400783-08	Soil	01/10/14 13:16	02/19/14 13:18
Core 2 (4-6 cm)	1400783-09	Soil	01/10/14 13:17	02/19/14 13:18
Core 2 (6-8 cm)	1400783-10	Soil	01/10/14 13:18	02/19/14 13:18
Core 2 (8-10 cm)	1400783-11	Soil	01/10/14 13:19	02/19/14 13:18
Core 2 (10-15 cm)	1400783-12	Soil	01/10/14 13:20	02/19/14 13:18
Core 3 (0-2 cm)	1400783-13	Soil	01/10/14 13:30	02/19/14 13:18
Core 3 (2-4 cm)	1400783-14	Soil	01/10/14 13:31	02/19/14 13:18
Core 3 (4-6 cm)	1400783-15	Soil	01/10/14 13:32	02/19/14 13:18
Core 3 (6-8 cm)	1400783-16	Soil	01/10/14 13:33	02/19/14 13:18
Core 3 (8-10 cm)	1400783-17	Soil	01/10/14 13:34	02/19/14 13:18
Core 3 (10-15 cm)	1400783-18	Soil	01/10/14 13:35	02/19/14 13:18
Core 4 (0-2 cm)	1400783-19	Soil	01/10/14 13:45	02/19/14 13:18
Core 4 (2-4 cm)	1400783-20	Soil	01/10/14 13:46	02/19/14 13:18
Core 4 (4-6 cm)	1400783-21	Soil	01/10/14 13:47	02/19/14 13:18
Core 4 (6-8 cm)	1400783-22	Soil	01/10/14 13:48	02/19/14 13:18
Core 4 (8-10 cm)	1400783-23	Soil	01/10/14 13:49	02/19/14 13:18
Core 4 (10-15 cm)	1400783-24	Soil	01/10/14 13:50	02/19/14 13:18



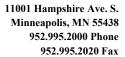
Hand Delivered by Client: No

Barr Engineering Company Client Ref: Spent Lime Pond 23621021.01 200 003 Report #: 1400783

4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr: Steven J. Albrecht

Minneapolis, MN 55435-4803 PO Number: Account ID: B01058

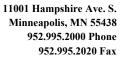
# **Conditions Upon Receipt**


Cooler 1

Received on Ice: No

**Temperature:** 19.4 °C COC Included: Yes Custody Seals Used: No

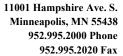
Temperature Blank: No **COC Complete:** Yes Custody Seals Intact: NA COC & Labels Agree: Yes


Preservation Confirmed: No Sufficient Sample Provided: Yes Headspace Present (VOC): No





4700 West 77th StreetClient Contact: Mr. Keith PilgrimProject Mgr. Steven J. AlbrechtMinneapolis, MN 55435-4803PO Number:Account ID: B01058


Analyte		Result	MRL	MDL	Units	Batch	Prepared	Analyzed	/Analyst	Method	Notes
1400783-01	Core 1 (0-2 cm)										
Aluminum		13000	5.0	0.075	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		17000	20	1.7	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		20000	10	0.34	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-02	Core 1 (2-4 cm)										
Aluminum		15000	9.5	0.14	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		20000	38	3.3	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		25000	19	0.65	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-03	Core 1 (4-6 cm)										
Aluminum		16000	10	0.15	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		23000	40	3.5	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		26000	20	0.68	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-04	Core 1 (6-8 cm)										
Aluminum		17000	9.4	0.14	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		25000	38	3.3	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		27000	19	0.64	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-05	Core 1 (8-10 cm)										
Aluminum		15000	8.8	0.13	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		25000	35	3.0	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		24000	18	0.60	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-06	Core 1 (10-15 cm)										
Aluminum		15000	9.0	0.13	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		25000	36	3.1	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		24000	18	0.62	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-07	Core 2 (0-2 cm)										
Aluminum		11000	4.8	0.072	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		14000	19	1.7	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		18000	9.6	0.33	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-08	Core 2 (2-4 cm)										
Aluminum		12000	8.9	0.13	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		19000	36	3.1	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		19000	18	0.61	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-09	Core 2 (4-6 cm)										
Aluminum		15000	10	0.15	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		25000	40	3.5	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		25000	20	0.68	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd





4700 West 77th StreetClient Contact: Mr. Keith PilgrimProject Mgr. Steven J. AlbrechtMinneapolis, MN 55435-4803PO Number:Account ID: B01058

Analyte		Result	MRL	MDL	Units	Batch	Prepared	Analyzed	/Analyst	Method	Notes
1400783-10	Core 2 (6-8 cm)										
Aluminum		14000	8.5	0.13	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		26000	34	2.9	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		23000	17	0.58	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-11	Core 2 (8-10 cm)										
Aluminum		13000	8.9	0.13	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		26000	36	3.1	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		22000	18	0.61	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-12	Core 2 (10-15 cm)										
Aluminum		11000	8.4	0.13	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		23000	34	2.9	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		20000	17	0.57	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-13	Core 3 (0-2 cm)										
Aluminum		15000	9.6	0.14	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		20000	38	3.3	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		27000	19	0.65	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-14	Core 3 (2-4 cm)										
Aluminum		15000	9.0	0.13	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		22000	36	3.1	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		26000	18	0.61	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-15	Core 3 (4-6 cm)										
Aluminum		14000	8.3	0.12	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Calcium		24000	33	2.9	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
Iron		26000	17	0.57	mg/kg	B4B0335	2/20/14	2/25/14	DRM	EPA 6010C	sd
1400783-16	Core 3 (6-8 cm)										
Aluminum		17000	9.7	0.15	mg/kg	B4B0360	2/24/14	2/25/14	DRM	EPA 6010C	sd
Calcium		25000	39	3.4	mg/kg	B4B0360	2/24/14	2/25/14	DRM	EPA 6010C	
Iron		29000	19	0.66	mg/kg	B4B0360	2/24/14	2/25/14	DRM	EPA 6010C	sd
1400783-17	Core 3 (8-10 cm)										
Aluminum		16000	9.4	0.14	mg/kg	B4B0360	2/24/14	2/25/14	DRM	EPA 6010C	sd
Calcium		26000	38	3.2	mg/kg	B4B0360	2/24/14	2/25/14	DRM	EPA 6010C	
Iron		27000	19	0.64	mg/kg	B4B0360	2/24/14	2/25/14	DRM	EPA 6010C	sd
1400783-18	Core 3 (10-15 cm)										
Aluminum		15000	8.8	0.13	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
Calcium		26000	35	3.1	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	
Iron		25000	18	0.61	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd





4700 West 77th StreetClient Contact: Mr. Keith PilgrimProject Mgr. Steven J. AlbrechtMinneapolis, MN 55435-4803PO Number:Account ID: B01058

Analyte		Result	MRL	MDL	Units	Batch	Prepared	Analyzed	/Analyst	Method	Notes
1400783-19	Core 4 (0-2 cm)										
Aluminum		15000	8.7	0.13	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
Calcium		19000	35	3.0	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	
Iron		26000	17	0.60	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
1400783-20	Core 4 (2-4 cm)										
Aluminum		16000	8.7	0.13	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
Calcium		21000	35	3.0	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	
Iron		28000	17	0.59	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
1400783-21	Core 4 (4-6 cm)										
Aluminum		16000	9.5	0.14	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
Calcium		27000	38	3.3	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	
Iron		28000	19	0.65	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
1400783-22	Core 4 (6-8 cm)										
Aluminum		15000	9.1	0.14	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
Calcium		26000	36	3.1	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	
Iron		26000	18	0.62	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
1400783-23	Core 4 (8-10 cm)										
Aluminum		15000	9.1	0.14	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
Calcium		26000	36	3.1	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	
Iron		24000	18	0.62	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
1400783-24	Core 4 (10-15 cm)										
Aluminum		14000	9.7	0.15	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd
Calcium		26000	39	3.4	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	
Iron		25000	19	0.67	mg/kg	B4B0360	2/24/14	2/26/14	DRM	EPA 6010C	sd

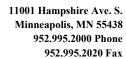


Barr Engineering Company Client Ref: Spent Lime Pond 23621021.01 200 003 Report #: 1400783

4700 West 77th StreetClient Contact: Mr. Keith PilgrimProject Mgr. Steven J. AlbrechtMinneapolis, MN 55435-4803PO Number:Account ID: B01058

# **Metals - Quality Control**

Method Blank (B4B0335-BLK1)							Prepare	d: 02/20/14	Analyzed:	02/25/14	
Analyte	Result	MRL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	0.443 J	5.0	0.075	mg/kg	NA	NA	NA	NA	NA	NA	
Calcium	ND	20	1.7	mg/kg	NA	NA	NA	NA	NA	NA	
Iron	0.542 J	10	0.34	mg/kg	NA	NA	NA	NA	NA	NA	
Laboratory Control Sample (B4B03	35-BS1)						Prepare	d: 02/20/14	Analyzed:	02/25/14	
Analyte	Result	MRL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	302	5.0	0.075	mg/kg	300	NA	101	80-120	NA	NA	
Calcium	4080	20	1.7	mg/kg	4000	NA	102	80-120	NA	NA	
Iron	311	10	0.34	mg/kg	300	NA	104	80-120	NA	NA	
Laboratory Control Sample Duplica	te (B4B0335-B	SD1)					Prepare	d: 02/20/14	Analyzed:	02/25/14	
Analyte	Result	MRL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	290	5.0	0.075	mg/kg	300	NA	96.6	80-120	4.35	20	
Calcium	3910	20	1.7	mg/kg	4000	NA	97.6	80-120	4.26	20	
Iron	296	10	0.34	mg/kg	300	NA	98.8	80-120	4.79	20	
Standard Reference Material (B4B0	335-SRM1)						Prepare	d: 02/20/14	Analyzed:	02/25/14	
Analyte	Result	MRL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	10600	11	0.17	mg/kg	6130	NA	173	71.4-250	NA	NA	
Calcium	13400	44	3.8	mg/kg	11900	NA	113	85.7-139	NA	NA	
Iron	11400	22	0.76	mg/kg	9630	NA	118	26.8-193	NA	NA	
Batch B4B0360 - EPA 3050B											
Method Blank (B4B0360-BLK1)							Prepare	d: 02/24/14	Analyzed:	02/25/14	
Analyte	Result	MRL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	0.580 J	5.0	0.075	mg/kg	NA	NA	NA	NA	NA	NA	
Calcium	ND	20	1.7	mg/kg	NA	NA	NA	NA	NA	NA	
Iron	0.882 J	10	0.34	mg/kg	NA	NA	NA	NA	NA	NA	




Barr Engineering Company Client Ref: Spent Lime Pond 23621021.01 200 003 Report #: 1400783

4700 West 77th StreetClient Contact: Mr. Keith PilgrimProject Mgr. Steven J. AlbrechtMinneapolis, MN 55435-4803PO Number:Account ID: B01058

# **Metals - Quality Control**

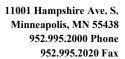
Laboratory Control Sample (B4B0	360-BS1)						Prepare	d: 02/24/14	Analyzed:	02/25/14	
Analyte	Result	MRL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	300	5.0	0.075	mg/kg	300	NA	100	80-120	NA	NA	
Calcium	4020	20	1.7	mg/kg	4000	NA	100	80-120	NA	NA	
Iron	307	10	0.34	mg/kg	300	NA	103	80-120	NA	NA	
Laboratory Control Sample Duplic	eate (B4B0360-E	BSD1)					Prepared	d: 02/24/14	Analyzed:	02/25/14	
Analyte	Result	MRL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Aluminum	297	5.0	0.075	mg/kg	300	NA	99.3	80-120	0.830	20	
Calcium	3980	20	1.7	mg/kg	4000	NA	99.4	80-120	0.939	20	
Iron	306	10	0.34	mg/kg	300	NA	102	80-120	0.316	20	
Matrix Spike (B4B0360-MS1)				Source	1400812-	01	Prepare	d: 02/24/14	Analyzed:	02/25/14	
Analyte	Result	MRL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Calcium	7760	21	1.8	mg/kg dry	4140	1640	147	75-125	NA	NA	qn
Matrix Spike Duplicate (B4B0360-	MSD1)			Source	1400812-	01	Prepare	d: 02/24/14	Analyzed:	02/25/14	
Analyte	Result	MRL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Calcium	5670	20	1.7	mg/kg dry	4010	1640	100	75-125	31.1	20	qo
Standard Reference Material (B4B	0360-SRM1)						Prepare	d: 02/24/14	Analyzed:	02/25/14	
Analyte	Result	MRL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Aluminum	11200	12	0.18	mg/kg	6130	NA	183	71.4-250	NA	NA	
				_		27.			27.		
Calcium	13600	47	4.1	mg/kg	11900	NA	114	85.7-139	NA	NA	





Barr Engineering Company Client Ref: Spent Lime Pond 23621021.01 200 003 4700 West 77th Street

Client Contact: Mr. Keith Pilgrim Minneapolis, MN 55435-4803


PO Number:

Report #: 1400783

Project Mgr: Steven J. Albrecht

Account ID: B01058

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \begin{array}{c} \end{array} \\ $ $\begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} $ \\ \\ \\ \end{array} \\  \\ \\ \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\  \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array}  \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\  \\ \\ \\ \\ \end{array} \\ \\ \end{array} $\\ \\ \\ \\ \end{array} \\ $	Cust	ody								L			Num	ber	of Cor	ntain	ers/F	Pres	ervativo	:			ос	/	. 7	
4700 West 77 Minneapolis, (952) 832-260	MN 5543	5-4803								+	П	T	Water	r	П	$\forall$	Т	П	Soil	П	+				of J	_
		21	0.1	7	00 0	07		_		+									50			Proj Mar	ject nager:_	Keit	4 Pilg	100
roject Number: Z3				,	.00	0 5				+			1	()			_		3		ners	Proj	ect			
roject Name: Spent	,			-1						+	red) #2	3)	196   .	#4			eOH)#1	erved)	1) A (1)		Containers	QC	Conta	ct:		
ample Origination State M	(use two	letter	postal s	state abb	reviation)	A.I	0	12	650	#1	eserve	Metals (HNO ₃ ) als (HNO ₃ )	reserve	(H ₂ SO ₄ ) #4		l l	BTEX (tared MeOH)	unpreserved)	OCs (unpreserved) #2 / Solids (plastic vial, unpres)		5		pled b	v: Ke	in M	enke
OC Number:			Depth	,		- IN	Matr	42	Time	(HCI)	(unpreserv	etals	dun)	nts (H25		Post	EX (t	red	unpr (unpr		umbe			612	vin Me -636-1	907
Location	Start Depth	Stop	Unit (m./ft. or in.)		llection Date /dd/yyyy)	Collection Time (hh:mm)	Soil	IX 4g	Type	VOCs	SVOCs	Total Metals (HNO3)	General (unpreserved)	Nutrients		MOON Francis SOON	GRO, BT	DRO (ta	SVOCs (unpreserved)#  Solids (plastic vial. un		Total N	Labo	oratory	Br	dun	
Core 1	0	Z	Ch	1/	10/14	13:00	X		X										X		$\parallel$					
Corel	7	4	1.		1	13:01	X												X							
Core!	4	6				13:02	X	<u> </u>											4							
Core 1	6	8				13:03	X											1	X							
Core 1	8	10				13:04	X		<b> </b>									)	X							
Core 1	10	15				13:05	X	X											X							
Cox Z	0	Z				13:15	X	X											X							
Core Z	7	4				13216	X	X										1	X							
Core Z	4	6				(3:17	X	X										>	$\langle$		2					
Cox Z	6	8	V			13:18	X	X										>	$\langle      $				3			
mmon Parameter/Containe	er - Preserv	ation K	ey 1	Relinquis	hed By:	Thul	les O	n Icc		Date 19/1	4		ime 70	, 1	Receive	ed by	N						2/14	le Jul	Time	
Volatile Organics = BTEX, GF Semivolatile Organics = PAHs, Full List, Herbicide/Pesticide/Pe	PCP, Dioxii		ist 1	Relinquis	hed By:			n Ice	-	Date	+	100	ime	-	Receive	d by	_						Da		Time	
General = pH, Chloride, Fluori DS, TS, Sulfate Nutrients = COD, TOC, Pheno litrogen, TKN	ide, Alkalini		5	Samples	Shipped V	/IA: Air Fre	eight [	_	eral E	xpre	ss 「	Sar	npler	. A	ir Bill	Nur	nber	:								



Report #: 1400783



Barr Engineering Company Client Ref: Spent Lime Pond 23621021.01 200 003

4700 West 77th Street Client Contact: Mr. Keith Pilgrim Project Mgr. Steven J. Albrecht

Minneapolis, MN 55435-4803 PO Number: Account ID: B01058

Chain of	Cust	ody								Γ			Nui	mbe	of Co	ntain	ners/l	Prese	ervativ	e		Т		,	_
4700 West 77										İ			Wat	er					Soil		Ι	1	coc	_ of	3
BARR Minneapolis, 1952) 832-260		5-4803																	out				oject		
Project Number: 236	7.10	21.	01							7						П			2			M	anager:		
	1 L									$\forall$				HCI)			7.7		La La	(38.)	iners	Pr	oject		
/	. /									+	d) #2	HNO3	3) ed)#3	Organics (HCI	7		() #1 eOH)#	erved	£ 2# (1) #2	unpres.)	Containe	l	C Contact:		
Sample Origination State /	(use two	letter	postal	state abbr	eviation)						serve	als (F	eserve	Organ	SO4)		d MeOH)#I (tared MeOH)#I	(tared unpreserved)	served	c vial,	ő	1	mpled by:		
COC Number:						N		42	651		unpre	Met	(unpr	ange	(H ₂			red u	unpre	(piasti	mber	Sa	тріса ву:		
Location	Start Depth	Stop Depth	Deptl Unit (m./ft or in.)	Colle	ection ate ld/yyyy)	Collection Time (hh:mm)	Mater Soil	ix	Type Comb.	2007	SVOCs (	Dissolved	General (unpreserved)#3	Diesel R	Nutrients		VOCs (tare GRO, BTEX	DRO (ta	SVOCs (unpreserved)	% Solids (plastic	Total Number	La	boratory:	rau	m
Core Z	8	10	CW	1/10	1/14	13:19	X			T		T			П						T				
2 Corc Z	10	15	1		/	13:20	X	Š		T											T				
Core 3	0	7				13:30	X											1	X		T				
· Core 3	2	4				(3;3/	X	)										$\rangle$	4						
Core 3	4	6				13,37	Ý	$\rangle$										>							
6. Cor 3	6	8				13:33	χ	$\rangle$										$\rangle$	1						
core 3	8	10				13:34	X	ý										$\rangle$							
Core 3	10	15				(3:35	Ý	X																	
o. Core 4	0	7				13:45	V	)										X							
Core 4	2	4	V	$\bigvee$		13:46	X	X										X			П				
Common Parameter/Containe	r - Preserv	ation K	ey	Relinquish		760.1		n Ico		Date //9/	7,1		Time		Receiv	ed b	y:	,					Date	Τ	Time
- Volatile Organics = BTEX, GR ? - Semivolatile Organics = PAHs,			ist	901 Relinquish	ed By:	v ws	0	n Ico	?	Date	_	<u> </u>	Time	$\rightarrow$	Receiv	ed by	y:	۸					2/19/14 Date	+	Time
Full List, Herbicide/Pesticide/PC 3 - General = pH, Chloride, Fluori		ty, TSS,	-					Y N				L													
TDS, TS, Sulfate 1 - Nutrients = COD, TOC, Pheno Nitrogen, TKN	ls, Ammoni	a	1	samples S	hipped V	/IA: Air Fr	eight [	_ Fc	deral	Expre	:55	∟S	ampl	cr	Air Bi	II Nu	mber								



11001 Hampshire Ave. S. Minneapolis, MN 55438 952.995.2000 Phone 952.995.2020 Fax

Barr Engineering Company Client Ref: Spent Lime Pond 23621021.01 200 003 Report #: 1400783

4700 West 77th StreetClient Contact: Mr. Keith PilgrimProject Mgr. Steven J. AlbrechtMinneapolis, MN 55435-4803PO Number:Account ID: B01058

Chain of	Cust	ody									N	Numb	er o	f Con	tainer	s/Pr	eser	vative				3	of 3
4700 West 77th Minneapolis, M (952) 832-2600	AN 5543	5-4803							F	П	V	Vater	П		+	П		Soil	П	$\prod$			_ of
roject Number: 236		7/	0					_	+								7			$\ $	Project Manage		
roject Name: Spa	,			/					1			#3 (HCl)				1#	3			iners	Project		
mple Origination State	4/								1	red) #2	03)	rved)#3	) #4		I# (Ho	MeOH)	ed)A1	rved) #2 'vial, unpres.)		Conta	QC Co	ntact:	
OC Number:					N	0	426	552	1) #1	Merale	lls (HN	inpresei	H2SO4		ed MeC	(tared	preserv	preserv		ber Of	Sample	d by:	
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Mater		Type	VOCs (HC	SVOCs (unpreserved) #2	Total Metals (HNO	General (unpreserved)#3  Diesel Range Organics (	Nutrients		VOCs (tared MeOH) #1	GRO, BTEX	Metals (un	SVOCs (unprese		Total Number Of Container	Laborat	tory: B	raun
Core 4	4	6	Cin	1/10/14	13:47	X	X			T			П	T	T	T	X			Ħ			
Core 4	6	g			13:48	X	X				П			П	Ħ		X		T	Ħ			
core 4	8	10			13:49	X	X							П	П		X			П			
Core 4	0	15	V	$\bigvee$	13:50	X	X								П		X						
									П								-						
															П		П						
															П		П						
																T	П	$\parallel$	$\parallel$				
						Ħ				T		Ħ	T		Ħ	T	П	$\top$	$\parallel$	$\dagger$			
nmon Parameter/Container	- Preserv	ation K	ey R	elinquished By:	Thenk	OI Y	Ice?		Date 19/10	/	Tii	me	Re	eceived	by:	1					Τ,	Date	Time
/olatile Organics = BTEX, GRC Gemivolatile Organics = PAHs, F full List, Herbicide/PCI	PCP, Dioxin Bs	ıs, 8270		elinquished By:	- WN	On	Ice?	<i>/ `</i>	Date		Tir		Re	eceived	by:						_	14 14 Date	Time
General = pH, Chloride, Fluoride DS, TS, Sulfate Autrients = COD, TOC, Phenols Autrient, TKN			Si	imples Shipped V	IA: Air Frei	ght [	Fede	ral E	xpress		] Sam	pler	Air	Bill 1	Numb	er:							

# TOXICITY TEST RESULTS WAKEFIELD STORM WATER POND

Report Date: May 31, 2012

Project No. 12-120

Prepared for:

Barr Engineering 4700 W. 77th Street Minneapolis, MN 55435





PROJECT: WHOLE EFFLUENT TOXICITY TESTING WAKEFIELD STORM WATER POND

PROJECT NUMBER: 12-120

#### TOXICITY TEST RESULTS

#### INTRODUCTION:

This report presents the results of toxicity testing on two water samples received by Environmental Toxicity Control (ETC) on May 22, 2012. The sample identified as outlet water and inlet water was from the Wakefield Storm Water Pond and was collected by employees from the Ramsey Washington Metro Watershed District on May 21, 2012. Mr. Keith Pilgrim of Barr Engineering requested that we conduct chronic toxicity testing on the water samples. The scope of our services was limited to conducting a chronic toxicity screen test on the invertebrate, *Ceriodaphnia dubia*, in the laboratory.

#### TEST METHODS:

Tests were conducted in accordance with the procedures outlined in <u>Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms</u>, Fourth Edition, EPA-821-R-02-013.

Control water used for testing consisted of moderately hard laboratory water.

Testing was started on 5/22/12, approximately 24 hours after sample collection.

Testing was conducted under a 2% CO₂ head space.

#### RESULTS:

Toxicity test results are summarized in Tables 1, test conditions are summarized in Table 2.

#### **OUALITY ASSURANCE AND QUALITY CONTROL:**

Satisfactory laboratory performance on an ongoing basis is demonstrated by conducting at least one acceptable toxicity test per month with a reference toxicant. Control charts for a reference toxicant and successive endpoints (LC50 and IC25) are plotted to determine if results are within prescribed limits. Results from our most recent reference test is shown in the following table:

Reference Toxicity Test		
Species	$IC_{25}$	Test Date
Ceriodaphnia dubia	0.910 g/l NaCl	05/11/12

Our results are within range of EPA expected results for the type of tests conducted.

Test methods and procedures are documented in ETC's Standard Operating Procedures (SOPs). Test and analysis protocols are reviewed by ETC's Quality Assurance/Quality Control Officer. Procedures are documented and followed as written. Any deviation from a QA/QC procedure is documented and kept in the project file. During this project, no deviation in method was warranted.

ENVIRONMENTAL TOXIGITY CONTROL

Walter Koenst Bioassay Manager

Table 1. Ceriodaphnia dubia Survival and Reproduction Results of Pit Water

Screen Test: Ceriodaphnia du	ıbia	
Sample ID	% Survival	Mean # of Young Produced
Lab Water	90	18.7
Outlet Water	100	25.9
Inlet Water	100	20.3

Table 2. Summary of Chemical and Physical Data of Toxicity Tests

Sample ID	pН	Dissolved Oxygen (mg/L)	Temp (°C)	Total Hardness (mg/L)	Total Alkalinity (mg/L)	Conductivity (µmhos/cm)
Lab Water	6.64 - 8.20	7.7 - 8.4	25	104	88	227
Outlet Water	6.66 - 8.02	7.5 - 8.5	25	128	92	576
Inlet Water	6.14 - 7.41	7.5 - 8.6	25	20	8	95

# EPA Methods:

Parameter	EPA Method Number
Dissolved Oxygen (mg/L)	360.1
pH	150.1
Total Hardness (as mg/CaCO ₃ /L)	130.2
Total Alkalinity (as mg/CaCO ₃ /L)	310.2
Specific Conductivity (µmhos/cm)	120.1

# CHRONIC TOXICITY TEST CERIODAPHNIA REPRODUCTION AND SURVIVAL

Client: <u>RWWWD</u> Project No.: 12-120

Test Dates/Time • Initiation: 110 5 22 12 Termination: 1100 5 29/12

24 111 7	2					Repl	icate						
Concentration	Day	1	2	3	4	5	6	7	8	9	10	Remarks	
Law H20	1	/	/	/	/	/	/	/			-		
	2	/	/	/	/	/	/	/	/	/			
	3	0	0	0	0	0	0	0	0	0	0		
	4	4	2	4	5	4	4	3	4	2	4		
	5	7	Le	0	0	8	0	0	7	5	6		
	6	0	0	7	5	0	7	6	0	X	3		
	7	11	8	11	11	8	11	9	9		12		
Total		22	14	22	21	20	22	18	20	7	19	X-	18.7
outlet	1					/	/						
00101	2	-	-	1		/	/	/	1	-			
	3	0	0	0	0	0	0	0	0	0	0		
	4	4	3	5	5	4	4	4	4	4	4		
	5	8	8	0	0	4	0	9	4	7	0		
	V	0	0	7	8	4	7	0	0	0	6		
	7	14	14	14	14	13	18	14	16	14	11		
Total		24	25	28	27	25	29	27	26	25	21	X=	25.9
Inlet	1	-											
	2	-	V	-		V		-		L			
	3	0	0	0	0	0	0	0	0	0	0		
	7	2	4	3	Ĭ	4	2	2	3	2	3		
	5	3	0	0	5	0	4	0	0	7	0		
	6	0	7	5	0	7	0	6	6	0	7		
	7	11	14	12	9	13	11	10	13	15	12		
Total		14	25	20	15	24	17	18	22	24	22	X= 2	20.3

# = No. of Live Young (-#) = No. of Dead Young 0 = No Young

X = Dead

y = Male

M= Missing

Analyst: Km /JS

Reviewed By:

Client: RWMWD	Project Number: 12 - 120
Test Type: Chronic	species: Cerciodaphnia dubia

			Sample ID		Remarks
Day/Date/Analyst	Parameter	Lab H20	Outlet	Inlet	
Day: O	pH	8.19	7.94	7.14	2010 CO2
	Dissolved Oxygen (mg/l)	9.3	8.4	8.3	
Date:	Temperature (°C)	25.0	25.0	25.0	
5/22/12	Conductivity (µmhos)	227	576	95	
Analyst:	Total Alkalinity (mg/l)	88	92	90	
Km Km	Total Hardness (mg/l)	104	128	20	
	Total Ammonia (mg/l)				
Day: (	pH	7.13	7.20	6.69	
old	Dissolved Oxygen (mg/l)	8.0	7.9	7.9	
Date:	Temperature (°C)	25.0	25.0	25.0	
5/23/12	Conductivity (µmhos)				
Analyst: KM	Total Alkalinity (mg/l)				
CIVI.	Total Hardness (mg/l)				
Day: \	pH	8.19	7.85	7.13	20% (02
New	Dissolved Oxygen (mg/l)	8.2	8.3	7.13	
Date:	Temperature (°C)	25.0	25.0	25.0	
5 123/12	Conductivity (µmhos)				
Analyst: VM	Total Alkalinity (mg/l)				
-111	Total Hardness (mg/l)				
Day: 2	pH	6.64	6.66	6.14	
old	Dissolved Oxygen (mg/l)	7.9	8.0	8.0	
Date:	Temperature (°C)	25.0	25.0	25-0	
5/24/12	Conductivity (µmhos)				
Analyst:	Total Alkalinity (mg/l)				
~mays ~m	Total Hardness (mg/l)				
Day: 2	pH	7.98	7.50	6.59	2% COZ
New	Dissolved Oxygen (mg/l)	7.9	8.3	8.3	
Date:	Temperature (°C)	25.0	25.0	25.0	
5 124/12	Conductivity (µmhos)				
Analyst: Km	Total Alkalinity (mg/l)				
-III	Total Hardness (mg/l)				

Reviewed by:

Date: 5/30/12

Client: RW MWD	Project Number: 12-120
Test Type: Chranic	Species: C-dubja

			Sample ID		Remarks
Day/Date/Analyst	Parameter	Lab H20	Outlet	Inlet	
Day: 3.	рН	7.14	7.16	6.64	
oid	Dissolved Oxygen (mg/l)	8.0	8.0	8.1	
Date:	Temperature (°C)	25.0	25.0	25.0	
5 125/12	Conductivity (µmhos)				
Analyst:	Total Alkalinity (mg/l)				
Km	Total Hardness (mg/l)				
	Total Ammonia (mg/l)				
Day: 3	pH	8.20	7.73	6.93	2º10 CO2
New	Dissolved Oxygen (mg/l)	8.1	8.4	8.4 25.0	
Date:	Temperature (°C)	25.0	25.0	25-0	
5 125/12	Conductivity (µmhos)				
Analyst:	Total Alkalinity (mg/l)				
M	Total Hardness (mg/l)				
Day: U	pH	6.97	7.02	10.47	
Day: 4	Dissolved Oxygen (mg/l)	8.2	8.2	9.2	
Date:	Temperature (°C)	25.1	25.	75.1	
5/20/12	Conductivity (µmhos)				
Analyst: KM	Total Alkalinity (mg/l)				
KVV	Total Hardness (mg/l)				
Day: 4	pH	8.15	8.02	7.41	2% CO2
New	Dissolved Oxygen (mg/l)	9.4	8.5	8.4	
Date:	Temperature (°C)	25.0	25.0	25.0	
5 126/12	Conductivity (µmhos)				
Analyst: Vm	Total Alkalinity (mg/l)				
MAI	Total Hardness (mg/l)				
Day: 5,	рН	7.07	7.15	(0.74	
old	Dissolved Oxygen (mg/l)	8.3	8.3	8.3	
Date:	Temperature (°C)	25.2	25.2	a6.2	
5/27/12	Conductivity (µmhos)				
Analyst: JS	Total Alkalinity (mg/l)				
93	Total Hardness (mg/l)				

Reviewed by:

Date: 5/30/12

Client: RWMWD	Project Number: 12-120	
Test Type: Chronic	Species: C. Ollibia	

Date: Te  Diate: Te  Diate: To  To  Day: Oph  Diate: Te	Parameter  H  Dissolved Oxygen (mg/l)  emperature (°C)  conductivity (µmhos)  otal Alkalinity (mg/l)  otal Hardness (mg/l)  otal Ammonia (mg/l)	8.63 8.3 25.0	Outlet 7.7  8.4 25.0	8.6 85.0	29° CO2
Date: Te Day: O pl Odd: Te Date: Te	emperature (°C) conductivity (µmhos) otal Alkalinity (mg/l) otal Hardness (mg/l)	8.3		8.6	290 CO2
Date: Te  Diate: Te  Diate: To  To  Day: O pl  Old Di  Date: Te	emperature (°C) conductivity (µmhos) otal Alkalinity (mg/l) otal Hardness (mg/l)	8.3		8.6	
Date: Te  5 / 27 / 2 Co  Analyst: JS  To  To  Day: O pt  Old Di  Date: Te	emperature (°C) conductivity (µmhos) otal Alkalinity (mg/l) otal Hardness (mg/l)			25.0	_
Analyst: JS To To Day: O pl Old Di Date: Te	onductivity (µmhos) otal Alkalinity (mg/l) otal Hardness (mg/l)				
Analyst: JS To To To To Day: Di Date: Te	otal Alkalinity (mg/l) otal Hardness (mg/l)				
Day: O pl-	otal Hardness (mg/l)				
Day: O pl Old Di					
Day: O pl Old Di Date: Te	ciai i i i i i i i i i i i i i i i i i i		7		
Old Di Date: Te	н	10.89	6.910	4.42	
Date: Te	bissolved Oxygen (mg/l)	991	75	75	
	emperature (°C)	25.3	25.3	25.3	
	onductivity (µmhos)	97.)	-, 5.	0.0.	
	otal Alkalinity (mg/l)				
03	otal Hardness (mg/l)				
Day: U pl	i	8.20	7.92	7.13	240 CO2
A	bissolved Oxygen (mg/l)	8.0	70	7.13	070 CO2
	emperature (°C)	250	25.0	50	
	onductivity (µmhos)	220	250	85.0	
	otal Alkalinity (mg/l)				
	otal Hardness (mg/l)				
		7.19	7.22	4.92	1
Day: 7 pt	Dissolved Oxygen (mg/l)	7.8	7.8	7.8	-
	emperature (°C)	25.4	25.4	25.4	
	Conductivity (µmhos)	2).1	27.9	27.7	
Contract of the second	otal Alkalinity (mg/l)				
FYV \	otal Hardness (mg/l)				
	Dissolved Oxygen (mg/l)				
	emperature (°C)				
	Conductivity (µmhos)				
	otal Alkalinity (mg/l)				
	otal Hardness (mg/l)				

# TOXICITY TEST RESULTS WAKEFIELD STORM WATER POND

Report Date: June 27, 2012

Project No. 12-148

Prepared for:

Barr Engineering 4700 W. 77th Street Minneapolis, MN 55435





PROJECT: WHOLE EFFLUENT TOXICITY TESTING

WAKEFIELD STORM WATER POND

PROJECT NUMBER: 12-148

#### TOXICITY TEST RESULTS

#### INTRODUCTION:

This report presents the results of toxicity testing on two water samples received by Environmental Toxicity Control (ETC) on June 19, 2012. The samples identified as outlet water and inlet water were from the Wakefield Storm Water Pond and were collected by employees from the Ramsey Washington Metro Watershed District on June 19, 2012. Mr. Keith Pilgrim of Barr Engineering requested that we conduct chronic toxicity testing on the water samples. The scope of our services was limited to conducting a chronic toxicity screen test on the invertebrate, *Ceriodaphnia dubia*, in the laboratory.

#### **TEST METHODS:**

Tests were conducted in accordance with the procedures outlined in <u>Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms</u>, Fourth Edition, EPA-821-R-02-013.

Control water used for testing consisted of moderately hard laboratory water.

Testing was started on 6/19/12, approximately 24 hours after sample collection.

Testing was conducted under a 2% CO2 head space.

#### RESULTS:

Toxicity test results are summarized in Tables 1, test conditions are summarized in Table 2.

#### **OUALITY ASSURANCE AND OUALITY CONTROL:**

Satisfactory laboratory performance on an ongoing basis is demonstrated by conducting at least one acceptable toxicity test per month with a reference toxicant. Control charts for a reference toxicant and successive endpoints (LC50 and IC25) are plotted to determine if results are within prescribed limits. Results from our most recent reference test is shown in the following table:

Reference Toxicity Test		
Species	$IC_{25}$	Test Date
Ceriodaphnia dubia	0.733 g/l NaCl	06/26/12

Our results are within range of EPA expected results for the type of tests conducted.

Test methods and procedures are documented in ETC's Standard Operating Procedures (SOPs). Test and analysis protocols are reviewed by ETC's Quality Assurance/Quality Control Officer. Procedures are documented and followed as written. Any deviation from a QA/QC procedure is documented and kept in the project file. During this project, no deviation in method was warranted.

ENVIRONMENTAL TOXICITY CONTROL

Walter Koenst Bioassay Manager

Table 1. Ceriodaphnia dubia Survival and Reproduction Results of Pit Water

Screen Test: Ceriodaphnia du	ıbia	
Sample ID	% Survival	Mean # of Young Produced
Lab Water	100	17.7
Inlet Water	100	26.9
Outlet Water	90	24.8

Table 2. Summary of Chemical and Physical Data of Toxicity Tests

Sample ID	pН	Dissolved Oxygen (mg/L)	Temp (°C)	Total Hardness (mg/L)	Total Alkalinity (mg/L)	Conductivity (µmhos/cm)
Lab Water	6.92 - 8.26	7.7 - 8.6	25	112	84	222
Inlet Water	6.37 - 7.45	7.8 - 9.4	25	8	24	42
Outlet Water	6.97 - 7.87	7.8 - 9.6	25	116	108	469

# EPA Methods:

Parameter	EPA Method Number
Dissolved Oxygen (mg/L)	360.1
pH	150.1
Total Hardness (as mg/CaCO ₃ /L)	130.2
Total Alkalinity (as mg/CaCO ₃ /L)	310.2
Specific Conductivity (µmhos/cm)	120.1

# CHRONIC TOXICITY TEST CERIODAPHNIA REPRODUCTION AND SURVIVAL

Client: RWWWD			Project No.:	12-	148			
Test Dates/Time • Initiation:	1130	6 19	Project No.:_ 12 Termi	nation: _	1000	6	26/	12

		Replicate									1	
Concentration	Day	1	2	3	4	5	6	2	8	9	10	Remarks
Lab Hzo	1	~	/	1		~	4	-		1	1	
	2	0	1	/	1	/		-	-	-	-	
	3	0	4	0	0	0	0	0	0	0	0	
	4	4	0	4	4	4	4	4	4	4	4	
	5	8	1	9	0	0	5	0	3	10	6	
	6	10	11	12	0	0	0	2	0	0	0	
	7	0	0	0	10	3	10	10	3	11	11	
Total		22	16	27	14	7	19	100	10	25	21	x=17.7
	,	-		/		/	/	/				
inut	1	U	1				/	/	-	/		
	2	0			0	0	~	5		/	~	
	3	0	0	0	0	0	0	0	2	0	0	
		3	9	-	9	4	4	5	0	5	-	
	5	4	1	8	,	10	. /	1	6	10	9	
	7	13	16	0	15	14	15	15	15	14	18	
T2+ ()		22	29	29	28	28	210	27	23	29	28	V=21.9
Total		LL	21	21	20	20	26	21	25	21	00	X=26.9
outlet	1			1	/	/		1		V		
001001	2			-	1		1		/			
	3	4	0	5	0	0	0	0	3	4	0	
	y	0	4	0	5	5	4	4	1	0	0	
	5	10	8	8	8	12	9	9	10	11	8	
	6	12	12	X	0	13	0	0	13	15	0	
	7	ti	0		14	0	15	11	0	0	11	
Total		26	24	13	27	30	28	24	27	30	19	x=24.8

✓ = Alive

# = No. of Live Young (-#) = No. of Dead Young 0 = No Young

X = Dead

y = Male

M= Missing

Analyst: VM

Reviewed By:

Client: RWMWD	Project Number: 12-148
Test Type: Chronic	species: Ceriodaphnia dubia

	1.0		Concentration	Remarks	
Day/Date/Analyst	Parameter	0	Inlet	Outlet	
Day:	pH	8.12	7.31	7.51	206 CO2
Day. O	Dissolved Oxygen (mg/l)	7.7	7.8	7.8	
Date:	Temperature (°C)	25.0	25-0	25.0	
6/19/12	Conductivity (µmhos)	222	42	469	
Analyst:	Total Alkalinity (mg/l)	84	24	108	
Km	Total Hardness (mg/l)	112	8	116	
	Total Ammonia (mg/l)				
Day: ( .	рН	7.07	6.38	7.00	
oid	Dissolved Oxygen (mg/l)	8.2	8.3	8.4	
Date:	Temperature (°C)	25.3	25.3	52:3	
6/20/12	Conductivity (µmhos)				
Analyst: KM	Total Alkalinity (mg/l)				
My	Total Hardness (mg/l)				
Day: \	pH	8.24	V87.39	7.83	2010 CO2
New	Dissolved Oxygen (mg/l)	8.3	8.4	8.4	
Date:	Temperature (°C)	25.0	25-0	25.0	
6/20/12	Conductivity (µmhos)	71.67			
Analyst: Km	Total Alkalinity (mg/l)				
MVI	Total Hardness (mg/l)				
Day: 2	pH	10.92	6.37	6.97	
oid	Dissolved Oxygen (mg/l)	8.4	8.4	8.5	
Date:	Temperature (°C)	25.2	25.2	25.2	
0/21/12	Conductivity (µmhos)				
Analyst: Km	Total Alkalinity (mg/l)				
MI	Total Hardness (mg/l)				
Day: 2	pH	8.19	7.41	7.56	290 CO2
New	Dissolved Oxygen (mg/l)	8.3	8.3	8.2	
Date:	Temperature (°C)	25.0	25.0	25.0	
4/21/12	Conductivity (µmhos)				
Analyst:	Total Alkalinity (mg/l)				
Analyst:	Fotal Hardiness (mg/l)				

Reviewed by:

Date: (0/2)/12

Client: RW MWD	Project Number: 12-148
Test Type: Chronic	Species: C-dubia

	Parameter		Concentration	Remarks	
Day/Date/Analyst		0	Inlet	Outlet	
Day: 3 ,	pH	7.27	6.70	7.35	
oid	Dissolved Oxygen (mg/l)	81	8.2	8.3	
Date:	Temperature (°C)	25.3	25.3	25.3	
0 122/12	Conductivity (µmhos)				
Analyst:	Total Alkalinity (mg/l)				
KM	Total Hardness (mg/l)				
	Total Ammonia (mg/l)				
Day: 3	рН	8.22	7.45	7.87	20/0 CO2
New	Dissolved Oxygen (mg/l)	8.1	8.7	8.6	
Date:	Temperature (°C)	25.0	25.0	25.0	
0/22/12	Conductivity (µmhos)				
Analyst: 🗸 m	Total Alkalinity (mg/l)				
	Total Hardness (mg/l)				
Day: 4	pH	7.19	4.58	7.22	
	Dissolved Oxygen (mg/l)	8.2	8.3	8-1	
Date:	Temperature (°C)	25.4	25.4	25.4	
6/23/12	Conductivity (µmhos)				
Analyst: V	Total Alkalinity (mg/l)				
Analyst: Km	Total Hardness (mg/l)				
Day: U	рН	8.26	7.27	7.86	2% COZ
New	Dissolved Oxygen (mg/l)	8-1	9.4	9.1	
Date:	Temperature (°C)	25.0	25.0	25.0	
6 /23/12	Conductivity (µmhos)				
Analyst:	Total Alkalinity (mg/l)				
KM KM	Total Hardness (mg/l)				
Day: 5,	pH	7.22	6.62	7.28	
oid	Dissolved Oxygen (mg/l)	8.2	8.1	8.2	
Date:	Temperature (°C)	25.3	25.3	25.3	
6 24/12	Conductivity (µmhos)				
Analyst: VM	Total Alkalinity (mg/l)				
CMT	Total Hardness (mg/l)				

Reviewed by:

Date: 6 27/12

Client: RWMWD	Project Number: 12 -148	
Test Type: Chronic	Species: C-dubia	

Day/Date/Analyst	Parameter	Concentration			Remarks
		0	Inlet	Outlet	
Day: 5	pH	8.14	7.29	7.84	2% CO2
NEW	Dissolved Oxygen (mg/l)	8-1	9.1	9.3	
Date:	Temperature (°C)	25.0	25.0	25.0	
6/24/12	Conductivity (µmhos)				
Analyst:	Total Alkalinity (mg/l)				
Km	Total Hardness (mg/l)				
	Total Ammonia (mg/l)				
Day: 6	pH	7.32	6.69	7.36	
	Dissolved Oxygen (mg/l)	8.6	8.4	8.4	
Date:	Temperature (°C)	25,3	25,3	73.3	
6126112	Conductivity (µmhos)			10	
Analyst:	Total Alkalinity (mg/l)			T	
Yw	Total Hardness (mg/l)				
Day: 6	pH	8.10	6.87	7.7.3	20/0 (02
NRW	Dissolved Oxygen (mg/l)	8.2	9.3	9.6	
Date:	Temperature (°C)	35.0	25.0	25.0	
6125112	Conductivity (µmhos)				
Analyst:	Total Alkalinity (mg/l)			1	
WK	Total Hardness (mg/l)				
Day: 7	pH	7.26	6.69	7.28	
Final	Dissolved Oxygen (mg/l)	8.0	8.0	8.0	
Date:	Temperature (°C)	25.3	25.3	25-3	
0 126/12	Conductivity (µmhos)				
Analyst:	Total Alkalinity (mg/l)				
KM	Total Hardness (mg/l)				
Day:	pH				
	Dissolved Oxygen (mg/l)				
Date:	Temperature (°C)				
1 1	Conductivity (µmhos)				
Analyst:	Total Alkalinity (mg/l)				
	Total Handness (mg/l)	1			

Reviewed by:

Date: 627/12