Description
Keywords: Agricultural systems, DSSAT, Hydrology, Management, Nitrogen, RZWQM, Subsurface drainage, Yield Thoroughly tested agricultural systems models can be used to quantify the long-term effects of crop management practices under conditions where measurements are lacking. In a field near Story City, Iowa, ten years (1996-2005) of measured data were collected from plots receiving low, medium, and high (57-67, 114-135, and 172-202 kg N ha-1) nitrogen (N) fertilizer application rates during corn (Zea mays L.) years. Using these data, the Root Zone Water Quality Model linked with the CERES and CROPGRO plant growth models (RZWQM-DSSAT) was evaluated for simulating the various N application rates to corn. The evaluated model was then used with a sequence of historical weather data (1961-2005) to quantify the long-term effects of different N rates on corn yield and nitrogen dynamics for this agricultural system. Simulated and measured dry-weight corn yields, averaged over plots and years, were 7452 and 7343 kg ha-1 for the low N rate, 8982 and 9224 kg ha-1 for the medium N rate, and 9143 and 9484 kg ha-1 for the high N rate, respectively. Simulated and measured flow-weighted average nitrate concentrations (FWANC) in drainage water were 10.6 and 10.3 mg L-1 for the low N rate, 13.4 and 13.2 mg L-1 for the medium N rate, and 18.0 and 19.1 mg L-1 for the high N rate, respectively. The simulated N rate for optimum corn yield over the long term was between 100 and 150 kg N ha-1. Currently, the owner-operator of the farm applies 180 kg N ha-1 to corn in nearby production fields. Reducing long-term N rates from 180 to 130 kg N ha-1 corresponded to an 18% simulated long-term reduction in N mass lost to water resources. Median annual FWANC in subsurface drainage water decreased from 19.5 to 16.4 mg N L-1 with this change in management. Current goals for diminishing the hypoxic zone in the Gulf of Mexico call for N loss reductions of 30% and greater. Thus, long-term simulations suggest that at least half of this N loss reduction goal could be met by reducing N application rates to the production optimum. However, additional changes in management will be necessary to completely satisfy N loss reduction goals while maintaining acceptable crop production for the soil and meteorological conditions of this study. The results suggest that after calibration and thorough testing, RZWQM-DSSAT can be used to quantify the long-term effects of different N application rates on corn production and subsurface drainage FWANC in Iowa.
Date Issued
2007
Number of Pages
16
Decade
Journal Title
Transactions of the ASABE
Main Topic
Keywords
Status
Format
Rights Holder
Minnesota Water Research Digital Library
Rights Management
Do Not Have Copyright Permission